

Versão do documento: 01

NOTA TÉCNICA ATUARIAL - NTA

Fundo Previdenciário do Município de Camaragibe - FUNPRECAM

CAMARAGIBE - PE

Número da Nota Técnica Atuarial: 2023.000197.1

Nome do Atuário Responsável:

Luiz Claudio Kogut - MIBA 1.308

Data Base da NTA: 14/02/2023

Tipo de Agente Público: Civil

Tipo de Submassa: Fundo

em Capitalização

Documento Assinado Digitalmente por: DANIELE DA SILVA FERREIRA

		_		
SI	IN/	IΔ	R	

SUMÁRIO		Acess
SUMÁRIO 1. OBJETIVO 2. CONDIÇÕES DE ELEGIBILIDADE 2.1. CONDIÇÕES DE ELEGIBILIDADE PARA QUEM AINDA NÃO ADERIU A EMENDA CONSTITUCION 12/11/2019 2.2. CONDIÇÕES DE ELEGIBILIDADE PARA QUEM JÁ ADERIU A EMENDA CONSTITUCIONAL Nº 103 D. 3. HIPÓTESES ATUARIAIS E PREMISSAS 3.1. TÁBUAS BIOMÉTRICAS		e em: https://e 4
2. CONDIÇÕES DE ELEGIBILIDADE		tce.tcepe 5
2.1. CONDIÇÕES DE ELEGIBILIDADE PARA QUEM AINDA NÃO ADERIU A EMENDA CONSTITUCION 12/11/2019	AL N° 5	103 DE //epp/v
2.2. CONDIÇÕES DE ELEGIBILIDADE PARA QUEM JÁ ADERIU A EMENDA CONSTITUCIONAL Nº 103 D	E 12/:	alidaDoc.s
3. HIPÓTESES ATUARIAIS E PREMISSAS		20 Códig
3.1. TÁBUAS BIOMÉTRICAS	10	30 do de
3.2. ALTERAÇÕES FUTURAS NO PERFIL E COMPOSIÇÃO DAS MASSAS	10	ocumei
3.3. ESTIMATIVA DE REMUNERAÇÃO E PROVENTOS	11	nto: 4a
3.4. TAXA DE JUROS ATUARIAL	12	0cfe54
3.5. ENTRADA NO MERCADO DE TRABALHO E EM APOSENTADORIA	12	-903e-
3.6. COMPOSIÇÃO DO GRUPO FAMILIAR	12	4ea6-a
3.7. DEMAIS PREMISSAS E HIPÓTESES	14	ff5-4b
3.8. MODELAGEM DE CÁLCULO ATUARIAL	16	1608d168
4. CUSTEIO ADMINISTRATIVO		18
4.1. CRITÉRIOS DO CUSTEIO ADMINISTRATIVO		
4.2. FORMULAÇÕES DE CÁLCULO DO CUSTEIO ADMINISTRATIVO	18	
4.3. EXPRESSÃO DE CÁLCULO E METODOLOGIA PARA A CONSTITUIÇÃO DE FUNDO ADMINISTRATIVO	18	
5. FORMULAÇÕES MATEMÁTICAS E METODOLOGIAS DE CÁLCULO		19
5.0. REGIME FINANCEIRO E MÉTODO DE FINANCIAMENTO	19	
5.0.1. REGIME FINANCEIRO	19	
5.0.2. MÉTODO DE FINANCIAMENTO	19	
5.0.3. CÁLCULO DO CUSTO NORMAL	20	
5.1. EXPRESSÕES DE CÁLCULO DOS BENEFÍCIOS PREVIDENCIÁRIOS A CONCEDER	21	
5.2. EXPRESSÕES DE CÁLCULO DOS BENEFÍCIOS PREVIDENCIÁRIOS CONCEDIDOS	32	
5.3. EXPRESSÕES DE CÁLCULO DAS ALÍQUOTAS DE CONTRIBUIÇÃO	45	
5.4. EXPRESSÕES DE CÁLCULO DO VALOR ATUAL DAS REMUNERAÇÕES FUTURAS	46	

1. OBJETIVO

A Nota Técnica Atuarial (NTA) tem por objetivo descrever a metodologia atuarial utilizada, as características do plano de benefícios, as premissas atuariais, financeiras demográficas, os regimes financeiros utilizadas na execução das avaliações reavaliações atuariais, bem como demonstrar as expressões matemáticas e sua respectivas simbologias utilizadas para determinar o cálculo do custeio e obrigações de custo normal, das provisões matemáticas, do custo suplementar, dos fluxos atuariais, observando o equilíbrio financeiro e atuarial como disposto na Constituição Federal.

observando o equilíbrio financeiro e atuarial como disposto na Constituição Federal.

Este documento foi elaborado em consonância com os artigos 8° e 9° da Portar 464 de 19 de novembro de 2018 e seguindo o modelo da Instrução Normativa n° 05 de 21 de dezembro de 2018.

Ao longo do documento mencionamos a forma de utilização das diversas hipóteses

Ao longo do documento mencionamos a forma de utilização das diversas hipóteses financeiras e biométricas, sendo que no Relatório de Avaliação Atuarial e no Demonstrativo de Resultado da Avaliação Atuarial (DRAA) de cada avaliação atuarial realizada é discriminado detalhadamente as tábuas e índices utilizados naque momento.

2. CONDIÇÕES DE ELEGIBILIDADE

ONSTITUCIONALI	ção das regras permanentes e d nciários de responsabilidade do RPF DE ELEGIBILIDADE PARA QUEM Nº 103 DE 12/11/2019	AINDA NÃO ADERIU A EMEND
Benefícios	Condições/Carências	Cálculo
Aposentado	orias com data de entrada no sistema ant	erior a EC nº 41, 31/12/2003
Aposentadoria por Tempo de Contribuição e Idade	 Tempo de contribuição: 35 anos (homem) 30 anos (mulher) Idade: 60 anos (homem) e 55 anos (mulher) Tempo de serviço público: 20 anos Tempo de carreira: 10 anos Tempo de cargo efetivo: 5 anos 	Cálculo erior a EC nº 41, 31/12/2003 Valor do Benefício = Rce Sendo: Rce: remuneração no cargo efetivo Valor do Benefício = Rce Sendo: Rce: remuneração no cargo efetivo
Aposentadoria do Professor	 Tempo de contribuição como Professor: 30 anos (homem) e 25 anos (mulher) Idade: 55 anos (homem) e 50 anos (mulher) Tempo de serviço público: 20 anos Tempo de carreira: 10 anos Tempo de cargo efetivo: 5 anos 	Valor do Benefício = Rce <u>Sendo:</u> Rce: remuneração no cargo efetivo
Aposentadoria por Invalidez	. Estar incapacitado para o trabalho	Valor do Benefício = Rce <u>Sendo:</u> Rce: remuneração no cargo efetivo
Aposentac	lorias com data de entrada no sistema a o	qualquer época (Regra Geral)
Aposentadoria por Tempo de Contribuição e Idade	 . Tempo de contribuição: 35 anos (homem) e 30 anos (mulher) . Idade: 60 anos (homem) e 55 anos (mulher) . Tempo de serviço público: 10 anos . Tempo de cargo efetivo: 5 anos 	Valor do Benefício = Me <u>Sendo:</u> Me: Média das 80% maiores remunerações desde julho de 1994 ou data de início das contribuições se posterior
Aposentadoria do Professor	. Tempo de contribuição como Professor: 30 anos (homem) e 25 anos (mulher) . Idade: 55 anos (homem) e 50 anos (mulher) . Tempo de serviço público: 10 anos . Tempo de cargo efetivo: 5 anos	Valor do Benefício = Me <u>Sendo:</u> Me: Média das 80% maiores remunerações desde julho de 1994 ou data de início das contribuições se posterior

Benefícios	Condições/Carências	Cálculo
Aposentadoria por Idade	. Idade: 60 anos (homem) e 55 anos (mulher) . Tempo de serviço público: 10 anos . Tempo de cargo efetivo: 5 anos	Valor do Benefício = Me.TC/CP Sendo: Me: Média das 80% maiores remuneraçõesese em: https://dec.tc.br/epp/validaDoc.sea. e 30 anos, se mulher. CP: Coeficiente de Proporcionalidade, 35 anoge en homem e 30 anos, se mulher. Valor do Benefício = Me.TC/CP Sendo: Me: Média das 80% maiores remuneraçõesidaDoc.sea desde julho de 1994 TC: Tempo de contribuição na data de aposentadoria, limitado a 35 anos se homem a se homem desde julho de 1994 TC: Tempo de contribuição na data de aposentadoria, limitado a 35 anos se homem a se homem desde aposentadoria, limitado a 35 anos se homem desde aposentadoria limitado a 35 anos se homem desde ap
Aposentadoria Compulsória	. Idade: 75 anos . Valor do Benefício: Me.TC/CP	e 30 anos, se mulher. CP: Coeficiente de Proporcionalidade, 35 anos, se homem e 30 anos, se mulher. Valor do Benefício = Me.TC/CP Sendo: Me: Média das 80% maiores remunerações desde julho de 1994 TC: Tempo de contribuição na data de aposentadoria, limitado a 35 anos, se homem e 30 anos, se mulher. CP: Coeficiente de Proporcionalidade, 35 anos, se homem e 30 anos, se mulher. Valor do Benefício = Me Sendo: Me: Média das 80% maiores remunerações desde julho de 1994 ou data de início das contribuições se posterior Se (Rce <= T) Valor do Benefício = Rce Senão (Rce > T) Valor do Benefício = T + 70%.(Rce - T) Sendo: Rce: remuneração no cargo efetivo
Aposentadoria por Invalidez	. Estar com incapacidade física ou mental permanente que impossibilita o exercício de atividade profissional, sendo justificativa para a aposentadoria mediante laudo médico (inválido)	Valor do Benefício = Me Sendo: Me: Média das 80% maiores remunerações 440 desde julho de 1994 ou data de início das contribuições se posterior
	Pensões	903e-4ea6-a
Pensão por Morte de Ativo	. Falecimento do segurado ativo	Se (Rce <= T) Valor do Benefício = Rce Senão (Rce > T) Valor do Benefício = T + 70%.(Rce - T) Sendo: Rce: remuneração no cargo efetivo T: Teto do RGPS
Pensão por Morte de Inativo	. Falecimento do segurado inativo	Se (Pi <= T) Valor do Benefício = Pi Senão (Pi > T) Valor do Benefício = T + 70%.(Pi - T) Sendo: Pi: Último provento do inativo T: Teto do RGPS

^(*) Estes valores e limites serão atualizados sempre que o RGPS divulgar novos valores.

2.2. CONDIÇÕES DE ELEGIBILIDADE PARA QUEM JÁ ADERIU A EMENDA CONSTITUCIONAL Nº 103 DE 12/11/2019

Segundo a Secretaria de Previdência do Ministério da Economia, "a aplicação aos RPPS dos Estados, Distrito Federal e Municípios das mesmas regras de benefícios dos segurados federais previstas na EC nº 103 de 2019 exige a edição de normas pelos entes federativos", portando, as regras de elegibilidade descritas abaixo são para os RPPS que

fizeram a adesão e para os segurados destes RPPS's que não tinham atingido requisitos mínimos de aposentadoria pelas regras do item 2.1.

Benefícios	Condições/Carências	Cálculo	
Aposentado	rias com data de entrada no sistema an	terior a EC nº 41, 31/12/2003	·
Aposentadoria por Tempo de Contribuição e Idade	 . Tempo de contribuição: 35 anos (homem) 30 anos (mulher) . Idade: 65 anos (homem) e 62 anos (mulher) . Tempo de serviço público: 20 anos . Tempo de carreira: 10 anos . Tempo de cargo efetivo: 5 anos 	Valor do Benefício = Rce <u>Sendo:</u> Rce: remuneração no cargo ef	
Aposentadoria do Professor	. Tempo de contribuição como Professor: 30 anos (homem) e 25 anos (mulher) . Idade: 60 anos (homem) 57 anos (mulher) . Tempo de serviço público: 20 anos . Tempo de carreira: 10 anos . Tempo de cargo efetivo: 5 anos	Valor do Benefício = Rce <u>Sendo:</u> Rce: remuneração no cargo ef	^r etivo
Aposentadoria por Invalidez	. Estar incapacitado para o trabalho	Valor do Benefício = Rce <u>Sendo:</u> Rce: remuneração no cargo ef	etivo
Aposentadoria por Tempo	orias com data de entrada no sistema a . Tempo de contribuição: 20 anos (homem e mulher) . Idade: 65 anos (homem) e 62 anos (mulher)	Valor do Benefício = Me * (60% + 2 excedente a 20 anos de To <u>Sendo:</u> Me: Média de todas as remuneraço	2% ao and C) ões desde
de Contribuição e Idade	. Tempo de serviço público: 10 anos . Tempo de cargo efetivo: 5 anos	julho de 1994 ou data de iníci contribuições se posterio TC: Tempo de Contribuição na d aposentadoria	r
Aposentadoria do Professor	. Tempo de contribuição como Professor: 30 anos (homem) e 25 anos (mulher) . Idade: 55 anos (homem) e 50 anos (mulher) . Tempo de serviço público: 10 anos . Tempo de cargo efetivo: 5 anos	Valor do Benefício = Me * (60% + 2 excedente a 20 anos de To <u>Sendo:</u> Me: Média de todas as remuneraço julho de 1994 ou data de início contribuições se posterior TC: Tempo de Contribuição na d	C) ões desde o das r
Aposentadoria Compulsória	. Idade: 75 anos . Valor do Benefício: Me.TC/CP	aposentadoria Valor do Benefício = Me.TC/ <u>Sendo:</u> Me: Média de todas as remuneraçi julho de 1994 ou data de iníci contribuições se posterior TC: Tempo de contribuição na d aposentadoria, limitado a 35 anos, e 30 anos, se mulher. CP: Coeficiente de Proporcionalidado se homem e 30 anos, se mul	ões desde o das r ata de se homer e, 35 ano

Benefícios	(Condiçõ	ões/	Carênc	ias		Cálculo	
aposentadoria por nvalidez 1ª Regra de Trans	. Estar com inc permanente d atividade prof a aposentado (inválido)	que impos fissional, pria media	ssibilit sendo ante la	a o exerci justificat udo méd	ício de iva para ico		Benefício = Me * (60% + 2% ao excedente a 20 anos de TC) <u>Sendo:</u> dia de todas as remunerações do de 1994 ou data de início das contribuições se posterior rempo de Contribuição na data da aposentadoria o sistema até 12/11/2019	Acesse
	. Tempo de cor mulher) . Idade: 61 and (homem) e 56 (mulher) . Tempo de ser . Tempo de car . Atingir os pon Contribuição)	os até 20: 6 anos at viço públ go efetivo	21 e 6 é 202: ico: 10 o: 5 an	2 anos a 1 e 57 an) anos los	pós	Valor do	dia de todas as remunerações de o de 1994 ou data de início das contribuições se posterior empo de Contribuição na data da aposentadoria o sistema até 12/11/2019 Benefício = Me * (60% + 2% ao excedente a 20 anos de TC) Sendo: dia de todas as remunerações de	do documen and
Aposentadoria por Tempo de Contribuição e Idade	Demais Seg Ano Fem 2019 86 anos 2020 87 anos 2021 88 anos 2022 89 anos 2023 90 anos 2024 91 anos 2025 92 anos 2026 93 anos 2027 94 anos 2029 96 anos 2030 97 anos 2031 98 anos 2032 99 anos 2033 100 anos	Masc 96 anos 97 anos 98 anos 99 anos 100 anos 101 anos 102 anos 105 anos 105 anos 105 anos 105 anos 105 anos	Ano 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033	Professor Fem 81 anos 82 anos 83 anos 84 anos 85 anos 86 anos 87 anos 90 anos 91 anos 92 anos 92 anos 92 anos 92 anos	Masc 91 anos 92 anos 93 anos 94 anos 95 anos 96 anos 97 anos 98 anos 99 anos 100 anos 100 anos 100 anos	julh	o de 1994 ou data de início das contribuições se posterior empo de Contribuição na data d aposentadoria	cfe54-903e-4ea6-aff5-4b1b08d1b85a •
2ª Regra de Trans	ição para Ap				ata de e 3/2019		o sistema até 12/11/2019	9
Aposentadoria por Tempo de Contribuição e Idade	. contribuição: (homem) . Idade: 60 and . Tempo de ser . Tempo de car . Adicional de 2 TC (35 anos (data da EC 10	os (homei viço públ go efetivo LOO% do homem) o	m) e 5 ico: 20 o: 5 an tempo	7 anos (n) anos ios que falta	nulher) ava para	Me: Méd julh	Benefício = Me * (60% + 2% ao excedente a 20 anos de TC) Sendo: dia de todas as remunerações do de 1994 ou data de início das contribuições se posterior empo de Contribuição na data da aposentadoria	esde
aposentadoria do Professor	. contribuição: 30 anos de P . Idade: 52 and . Tempo de ser . Tempo de car . Adicional de 2 TC (30 anos (data da EC 10	rofessor (os (mulhe viço públ go efetivo LOO% do homem) o	(home er) e 57 ico: 20 o: 5 an tempo	m) 7 (homem) anos ios que falta	n) ava para	Me: Méc julh	Benefício = Me * (60% + 2% ao excedente a 20 anos de TC) <u>Sendo:</u> dia de todas as remunerações do o de 1994 ou data de início das contribuições se posterior empo de Contribuição na data d aposentadoria	esde

]		
į		
	Acesse	Documento Assinado Digitalmente por: Da
)% + 2%		ento.
TC)	https:	Assir
Benefi Iimito d	CIO⊱	nado
e TC) D Benefi limite d	9.tcel	Digit
ões des io das	e.tc.	alme
ões des	deg	nte p
	p/val	or: D
r	≒.	150

Cálculo

Acesse	Cocuit
r do Benefício Base = Me * (60% + 2% ag	IIICIIIO Assiliado
ano excedente a 20 anos de TC)	ASS
or da Pensão = 50% do Valor do Benefíci🥳	Шац
e + 10% por dependente até o limite de ଞୂ	
dependentes မွို	18114
<u>Sendo:</u> <u>ਤੋਂ</u>	III
: Média de todas as remunerações desdeङ्क	пене рог.
julho de 1994 ou data de início das	101
contribuições se posterior	1
r do Benefício Base = Benefício do Inativ	MINIELE DA SIL
or da Pensão = 50% do Valor do Benefício	È
e + 10% por dependente até o limite de ${\mathfrak F}$	1 2
dependentes 🚊	Ě
Sendo:	
: Média de todas as remunerações desde	LENN
julho de 1994 ou data de início das	
contribuições se posterior	5
i Média de todas as remunerações desdedocumento: Média de todas as remunerações desdedocumento: de 1994 ou data de início das contribuições se posterior 40.0cfe54-903e-4ea6-aff5-4b1b08d1b85a	
cfe5	ı
4-90	
36	
1 e a6	
aff.	
5-4b	:
0.160	
8d II	
b85;	i
μ	

	Pensões	Acesse
Pensão por Morte de Ativo	. Falecimento do segurado ativo	Valor do Benefício Base = Me * (60% + 2% ag har
Pensão por Morte de Inativo	. Falecimento do segurado inativo	Valor do Benefício Base = Benefício do Inative Valor da Pensão = 50% do Valor do Benefíció Base + 10% por dependente até o limite de Codigo do dependentes Sendo: Me: Média de todas as remunerações desde

Condições/Carências

Benefícios

3. HIPÓTESES ATUARIAIS E PREMISSAS

Abaixo estão demonstrados as hipóteses e atuariais e demais premissas como índices biométricos (mortalidade geral ativos e inativos de válidos, entrada em invalidez de ativos § válidos, mortalidade geral de ativos e inativos inválidos, morbidez, etc.) bem como índices econômicos (como taxa de juros, indexador inflacionário, taxa de crescimento salarial, taxa de crescimento de benefícios, etc.), além de outras considerações importantes (composição de família-média, idade de entrada, expectativa de reposição de segurados ativos, etc). Essas hipóteses devem ser analisadas a cada ano para ajustá-las, se necessário, fazendo aderência à realidade daquele momento.

3.1. TÁBUAS BIOMÉTRICAS

ÁBUAS BIOMÉTRICAS

São tabelas que medem através de um censo demográfico as diversas bilidades (de vida, de morte, de entrada em invalidez etc.) do ação em função do ido! probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de morte, de entrada em invalidez, etc.) de um grupo de la probabilidades (de vida, de vi população em função da idade.

Hipótese	Descrição 🤅			
I. Tábua de Mortalidade Geral (válidos e inválidos)	Tábua IBGE divulgada anualmente pela Secretaria de Previdência e informada no DRAA e no Relatório de Avaliação Atuarial podendo ser alterada caso seja constatado que não é aderente em futuros estudos de aderência,			
↑ A tábua de mortalidade geral apresenta a probabilidade de morte e sobrevida de uma população, em função da idade Será usada para o cálculo do risco de morte gerando pensão e sobrevivência dos segurados ativos, inativos e pensionistas válidos e inválidos.				
II. Tábua de Entrada em Invalidez	Tábua Álvaro Vindas, informada no DRAA e no Relatório de Avaliação Atuarial. podendo ser alterada caso seja constatado que não é aderente em futuros estudos de aderência,			
↑ A tábua de entrada em invalidez apresenta, em função	da idade, a probabilidade de perda permanente da capacidade			

3.2. ALTERAÇÕES FUTURAS NO PERFIL E COMPOSIÇÃO DAS MASSAS

laboral e será usada para o cálculo do risco de aposentadoria por invalidez permanente dos segurados ativos.

Hipótese	Descrição		
I. Rotatividade	Não adotada. Nas avaliações atuariais presume- se que a redução de custos ocasionada pela adoção desta hipótese seria anulada pela provável compensação financeira a pagar referente ao tempo de contribuição no ente público.		
↑ A rotatividade, também conhecida como <i>turnover</i> , é a frequência com que segurados ativos saem do plano			

Hipótese	Descrição	We We
II. Expectativa de reposição de	Não adotaremos nenhuma expectativa	₽ĕ
segurados	reposição de segurados ativos (gerações futur	as∦
	até que seja regulamentada sua utilização c	om
	impacto na apuração do resultado atuarial.	n: htt

[↑] Nesta hipótese se estima a composição futura da massa de segurados vinculados ao plano previdenciário, após ₹ aposentadoria dos atuais segurados ativos. Normalmente adotam a reposição integral do segurado que se aposentações simulando a admissão de outro, com as mesmas características de sexo, idade ao ingressar no RPPS, cargo, carreira tempo anterior e remuneração inicial calculada pelo desconto da remuneração final do segurado aposentado, pela taxe ou curva de crescimento real das remunerações.

3.3. ESTIMATIVA DE REMUNERAÇÃO E PROVENTOS

3.3. ESTIMATIVA DE REMUNERAÇÃO E PROVENTOS

↑ Nesta hipótese se estima a composiça aposentadoria dos atuais segurados ativo simulando a admissão de outro, com as tempo anterior e remuneração inicial calco ou curva de crescimento real das remuneras.	reposição de segurados ativos (gerações futuras) até que seja regulamentada sua utilização cominimanto na apuração do resultado atuarial. ão futura da massa de segurados vinculados ao plano previdenciário, após as. Normalmente adotam a reposição integral do segurado que se aposentado mesmas características de sexo, idade ao ingressar no RPPS, cargo, carreira regulada pelo desconto da remuneração final do segurado aposentado, pela taxes rações. AÇÃO E PROVENTOS Descrição Descrição Descrição Descrição
	AÇAO E PROVENTOS
Hipótese	Descrição 💆
I. Taxa real do crescimento da remuneração por mérito e produtividade	Descrição Mérito: estudo específico para cada avaliação atuarial realizada, considerando a média por idade das remunerações dos segurados ativos, respeitando como limite mínimo o crescimento real de 1% ao ano. Anualmente elaboramos um estudo específico onderelacionamos a idade do segurado ativo, a quantidade de segurados por idade e a remuneração média por idade. Selecionamos o intervalo de idades mais representativa da massa de segurados, pelo tempo médio de carreira do grupo, e avaliamos o crescimento real das remunerações neste intervalo. Produtividade: não foi considerado crescimento por produtividade: não foi considerado crescimento por produtividade.
↑ Taxa real utilizada para reajuste anual data da aposentadoria	produtividade. do valor real das remunerações dos segurados ativos da data da avaliação até
II. Taxa real do crescimento dos proventos	Não foi considerado crescimento real para inativos.

↑ Taxa real utilizada para reajuste anual do valor real dos proventos dos aposentados e pensionistas com direito a

Exemplo de Estudo de Crescimento Salarial:

paridade, da data da avaliação até a expectativa de vida do beneficiário

Faixa Etária	Nº Segurados Ativos na Faixa Etária	% do Total de Segurados Ativos	Crescimento Médio Anual
24 a 58 anos	16.772	86,04%	2,20%
25 a 59 anos	17.138	87,91%	2,32%
26 a 60 anos	17.411	89,31%	1,97%
27 a 61 anos	17.625	90,41%	1,86%
28 a 62 anos	17.730	90,95%	1,17%
29 a 63 anos	17.825	91,44%	1,55%
30 a 64 anos	17.813	91,38%	1,04%
31 a 65 anos	17.700	90,80%	1,14%
32 a 66 anos	17.496	89,75%	1,62%
33 a 67 anos	17.190	88,18%	1,05%
34 a 68 anos	16.817	86,27%	1,51%

Neste exemplo, considerando períodos de 35 anos, a faixa etária mais representativa dos 29 a 63 anos, com 91,44% do total de segurados e o crescimento anual de remunerações médias é de 1,55 ao ano. Este estudo é realizado a cada avaliação atuaria anual e o percentual indicado é utilizado para os cálculos do benefício inicial de aposentadoria ou pensão e para estimar as receitas futuras.

3.4. TAXA DE JUROS ATUARIAL

Corresponde ao retorno esperado das aplicações financeiras de todos os ativos garantidores do RPPS no horizonte de longo prazo que assegure o equilíbrio financeiro atuarial do Fundo Capitalizado, ou à taxa de juros parâmetros, conforme normas aplicáveis às avaliações atuariais dos RPPS.

O cálculo da duração do passivo demostra o tempo médio necessário para o plando pagar seu passivo. Desta forma se estabelece um parâmetro de idade previdenciária, onde quanto maior a duração do passivo, mais jovem é o plano.

Relacionando esta idade previdenciária com o retorno médio esperado dos títulos públicos encontramos uma taxa de retorno esperada.

Esta tabela de juros será atualizada e divulgada regularmente pela Secretaria de Previdência.

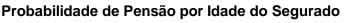
3.5. ENTRADA NO MERCADO DE TRABALHO E EM APOSENTADORIA

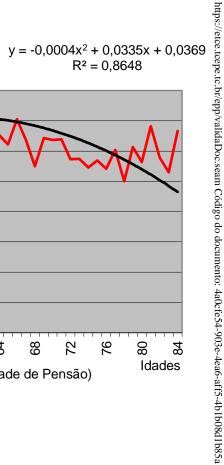
Premissa	Descrição		
I. Idade estimada de ingresso ao mercado de trabalho	Preferencialmente é utilizada a informação cadastral atualizada, contendo os tempos de contribuição anterior a admissão no ente público. Caso esta informação não estiver disponível, é elaborada uma estimativa de tempo de contribuição anterior.		
↑ Inexistindo na base cadastral informações sobre o te considerada a idade estimada de ingresso do participant	mpo de contribuição anterior a admissão no ente público, será		
II. Idade estimada de entrada em aposentadoria programada	É realizado o cálculo da elegibilidade do segurado ativo a um benefício programado, levando em conta suas informações cadastrais e as regras descritas no Capítulo 2 deste documento.		

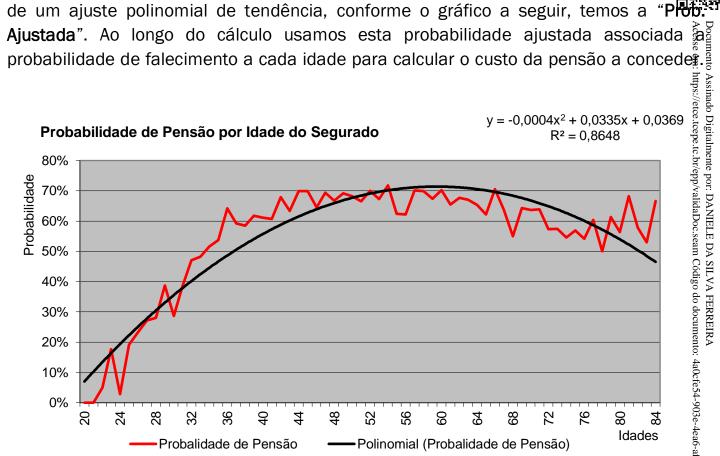
3.6. COMPOSIÇÃO DO GRUPO FAMILIAR

Utilizamos o método de composição média familiar (Hx) por idade do segurado ativo ou inativo, resultante de estudo estatístico da consultoria, proveniente de RPPS que mantém base cadastral consistente sobre os dependentes de seus segurados.

Esta hipótese é utilizada no cálculo dos benefícios de pensão por morte a conce**de** de ativos e aposentados e é compatível com a metodologia de cálculo "por fluxo atuar de utilizada pela consultoria.


Como todos os benefícios de pensão são calculados por capitalização, seria inadequado considerar apenas a composição familiar existente no cadastro de dados pois ao longo dos anos o segurado terá modificação desta composição.


Por exemplo: Se considerarmos apenas a família informada, o segurado mais jove probabilidade de ter uma família e consequentemente gerar um custo de pensão a consequentemente gerar um custo de pensão de pen


orobabilidade de ter uma família e consequentemente gerar um custo de pensão estimado. Idade Nº Titulares Famílias Prob. Pensão Prob. Ajustada (Hx) Idade Nº Titulares Famílias Prob. Pensão (Hx) Idade Nº Titulares Famílias Prob. Pensão (Hx) Idade (Hx) Idade Idade Idade (Hx) Idade (Idade									
Idade	Nº Titulares	Famílias	Prob. Pensão	Prob. Ajustada (Hx)	Idade	Nº Titulares	Famílias	Prob. Pensão	Prob. Ajustada (Hx)
18	0	0	0,000000	0,070000	61	191	125	0,654450	0,736500
19	1	0	0,000000	0,102300	62	173	117	0,676301	0,734400
20	5	0	0,000000	0,133800	63	167	112	0,670659	0,731500
21	3	0	0,000000	0,164500	64	176	115	0,653409	0,727800
22	20	1	0,050000	0,194400	65	164	102	0,621951	0,723300
23	34	6	0,176471	0,223500	66	180	127	0,705556	0,718000
24	35	1	0,028571	0,251800	67	135	86	0,637037	0,711900
25	89	17	0,191011	0,279300	68	131	72	0,549618	0,705000
26	146	34	0,232877	0,306000	69	140	90	0,642857	0,697300
27	180	49	0,272222	0,331900	70	132	84	0,636364	0,688800
28	221	62	0,280543	0,357000	71	108	69	0,638889	0,679500
29	243	94	0,386831	0,381300	72	96	55	0,572917	0,669400
30	244	70	0,286885	0,404800	73	87	50	0,574713	0,658500
31	218	84	0,385321	0,427500	74	55	30	0,545455	0,646800
32	251	118	0,470120	0,449400	75	65	37	0,569231	0,634300
33	303	146	0,481848	0,470500	76	61	33	0,540984	0,621000
34	279	144	0,516129	0,490800	77	58	35	0,603448	0,606900
35	283	152	0,537102	0,510300	78	38	19	0,500000	0,592000
36	335	215	0,641791	0,529000	79	44	27	0,613636	0,576300
37	319	189	0,592476	0,546900	80	39	22	0,564103	0,559800
38	344	201	0,584302	0,564000	81	22	15	0,681818	0,542500
39	277	171	0,617329	0,580300	82	19	11	0,578947	0,524400
40	298	182	0,610738	0,595800	83	17	9	0,529412	0,505500
41	305	185	0,606557	0,610500	84	21	14	0,666667	0,485800
42	262	178	0,679389	0,624400	85	17	9	0,529412	0,465300
43	262	166	0,633588	0,637500	86	15	9	0,600000	0,444000
44	322	225	0,698758	0,649800	87	11	7	0,636364	0,421900
45	345	241	0,698551	0,661300	88	14	7	0,500000	0,399000
46	310	200	0,645161	0,672000	89	5	2	0,400000	0,375300
47	375	260	0,693333	0,681900	90	2	1	0,500000	0,350800
48	355	237	0,667606	0,691000	91	3	2	0,666667	0,325500
49	340	235	0,691176	0,699300	92	2	1	0,500000	0,299400
50	359	245	0,682451	0,706800	93	0	0	0,000000	0,272500
51	334	222	0,664671	0,713500	94	1	0	0,000000	0,244800
52	337	236	0,700297	0,719400	95	0	0	0,000000	0,216300
53	284	191	0,672535	0,724500	96	1	0	0,000000	0,187000
54	241	173	0,717842	0,728800	97	0	0	0,000000	0,156900
55	271	169	0,623616	0,732300	98	0	0	0,000000	0,126000
56	222	138	0,621622	0,735000	99	0	0	0,000000	0,094300
57	201	141	0,701493	0,736900	100	0	0	0,000000	0,061800
58	229	160	0,698690	0,738000	101	0	0	0,000000	0,028500
59	193	130	0,673575	0,738300	102	0	0	0,000000	0,000000
60	198	139	0,702020	0,737800	103	0	0	0,000000	0,000000

Realizamos uma pesquisa de composição familiar, descrito na tabela acima, pela idade do segurado titular, ativo ou aposentado, em um cadastro confiável. Depois totalizamos o número de titulares por idade, o número do famílias destes titulares.

Calculamos a probabilidade de um titular ter uma família, coluna "Prob.Pensão" e departo de la columna de la colum de um ajuste polinomial de tendência, conforme o gráfico a seguir, temos a "Plob"

3.7. DEMAIS PREMISSAS E HIPÓTESES

Abaixo as demais premissas e hipóteses.

Classificação	Definição
I. Fator de determinação do valor real ao longo do tempo das remunerações e proventos	Este fator ajusta as receitas vinculadas a contribuições incidentes sobre remunerações e proventos e as despesas futuras com benefícios às eventuais perdas inflacionárias ocorridas no decorrer dos anos futuros.
↑ Fator que reflete a perda do poder aquisitivo em ter compreendido entre os reajustes anuais.	mos reais ocorrida nas remunerações ou proventos no período
II. Benefícios a conceder com base na média das remunerações ou com base na última remuneração	Para os benefícios estimados pela média, é estimado um fator redutor aplicado sobre a última remuneração, considerando a remuneração mensal informada na base de dados e a taxa de crescimento real ao longo de todo o tempo de atividade do segurado, conforme exemplo abaixo ou se estabelece um percentual médio geral para todos os

Classificação	Definição 🎎			
	benefícios a conceder pela média, basea			
	num estudo estatístico específico do plano. 🕺			
↑ Forma de cálculo onde se estima o valor inicial do fut calculados pela média.	uro benefício de aposentadoria ou pensão dos segurados ativos 🖁			
III. Estimativa do crescimento real do	Não adotado, presume-se que o teto 🦸			
teto de contribuição do RGPS	Não adotado, presume-se que o teto 🥳 apenas corrigido pela inflação e não			
	adotamos projeção de inflação nas			
	avaliações atuariais.			
↑ Estimativa da variação do valor do teto de contribuição do RGPS ao longo do tempo.				
IV. Projeção de Inflação	Não adotada, presume-se que os efeitos da			
	inflação são nulos, pois afetam as receitas despesas do plano de forma equivalente.			
	inflação são nulos, pois afetam as receitas despesas do plano de forma equivalente.			
↑ Estimativa da inflação anual futura que impacto na correção das remunerações e proventos.				
V. Compensação Financeira a Pagar	despesas do plano de forma equivalente. rreção das remunerações e proventos. Consideramos este compromisso como nulogo devido a não adoção da hipótese de rotatividade.			
	devido a não adoção da hipótese de			
	rotatividade.			

Fator de Capacidade de Remunerações e Benefícios (FC):

rotatividade.

↑ Forma de cálculo dos compromissos do fundo com o RGPS, relativamente a segurados que contribuíram para o RPP e se desligaram sem alcançar o direito a um benefício previdenciário.

Fator de Capacidade de Remunerações e Benefícios (FC):

$$FC = (1 + I_m). \frac{1 - (1 + I_m)^{-12}}{(12 \cdot I_m)}$$

$$I_m = inflação mensal estimada, sendo:$$

$$I_m = (1 + I_a)^{\left(\frac{1}{12}\right)} - 1$$

$$I_a = inflação anual estimada (limitada ao máximo de 8% ao ano ou FC>=96,5578%)$$

$$I_m = (1 + I_a)^{\left(\frac{1}{12}\right)} - 1$$

Exemplo de Cálculo de Benefício pela Média:

Ano	Mensal	Anual	Ano	Mensal	Anual
2005	4.031,35	52.407,61	2023	5.317,28	69.124,67
2006	4.093,84	53.219,93	2024	5.399,70	70.196,10
2007	4.157,30	54.044,84	2025	5.483,40	71.284,14
2008	4.221,73	54.882,53	2026	5.568,39	72.389,05
2009	4.287,17	55.733,21	2027	5.654,70	73.511,08
2010	4.353,62	56.597,08	2028	5.742,35	74.650,50
2011	4.421,10	57.474,33	2029	5.831,35	75.807,58
2012	4.489,63	58.365,18	2030	5.921,74	76.982,60
2013	4.559,22	59.269,84	2031	6.013,53	78.175,83
2014	4.629,89	60.188,53	2032	6.106,73	79.387,55
2015	4.701,65	61.121,45	2033	6.201,39	80.618,06
2016	4.774,53	62.068,83	2034	6.297,51	81.867,64
2017	4.848,53	63.030,90	2035	6.395,12	83.136,59
2018	4.923,68	64.007,88	2036	6.494,25	84.425,21
2019	5.000,00	65.000,00	2037	6.594,91	85.733,80
2020	5.077,50	66.007,50	2038	6.697,13	87.062,67
2021	5.156,20	67.030,62	2039	6.800,93	88.412,14
2022	5.236,12	68.069,59	Média 100%	4.609,06	59.917,77
			Média 80%	4.854,27	63.105,48

Neste exemplo o segurado ativo tem remuneração mensal de R\$ 5.000,00 em 2019. Estimamos o salário inicial em 2005 (data de início de contribuição), descontando a taxa

de crescimento real anual de 1,55% ao ano e na aposentadoria em 2039, corrigión 1,55% ao ano. Depois é feita a média dos valores corrigidos. Este processo é repetition 1,55% ao ano. Depois é feita a média dos valores corrigidos. Este processo é repetition para cada segurado ativo, que terá benefício programado ou de risco calculado pelas em: https://ecc.tcept.ph/alasem.https://ecc.tcept.ph/a

Todos estes cálculos são realizados por sistema próprio e específico da Consultoria com uma estrutura sequencial pré-definida, descrita abaixo:

Módulo 1: Inicialização das tabelas de hipóteses biométricas, financeiras, diferimento individual, for da remuneração e benefício inicial

Seção 1: Seleção de dados de ativos - Fluxo Anual Previdenciário

1.1. Cálculo do Fator do Custo Normal

1.2. Cálculo das Folhas Salariais (FOLHA/FOLHA_X)

1.3. Cálculo das Receitas sobre a folha

(RCTBSERV/RCTBPREF/RCTBADICPREFA/RCTBADICPREF/RICTBADICPREF)

1.4. Cálculo da Invalidez (DAI/RAI/CNAI)

1.5. Cálculo das Aposentadorias (DATS/RATS/CNATS/RCFATS, DAV/RAV/CNAV/RCFAV,

DPROF/RPROF/CNPROF/RCFPROF, DMILI/RMILI/CNMILI/RCFMILI)

1.6. Cálculo das Pensões de Ativos e Reversão de Aposentadorias (DPMA/RPMA/CNPMA,

DPMAI/RPMAI/CNPMAI, DPMI/RPMI/CNPMI/RCFPMI)

Seção 2: Seleção de dados de aposentados - Fluxo Anual Previdenciário

2.1. Definição do tipo de inativo (inválido/não inválido)

2.2. Cálculo da Invalidez e reversão de pensão

(DIAI/RIAI/RIAIPREF/DIPMAI/RIPMAI

- 2.3. Cálculo das Aposentadorias e reversão de pensão (DIATS/RIATS/RIATSPREF/RCFIN ATS/DIPMI/RIPMI/RIPMIPREF/RCFIN IN)

Seção 3: Seleção de dados de pensionistas - Fluxo Anual Previdenciário

3.1. Cálculo das Pensões (DIPM/RIPM/RIPMPREF/RICFIN_PM)

Todas as avaliações atuariais se baseiam na estimativa das receitas e despesas anuais, elaborados para cada segurado, de cada tipo de benefício garantido pelo plano e depois todos os resultados individuais são consolidados num fluxo anual geral.

Os resultados gerais de custos e receitas anuais são descontados a valor presente para a definição dos valores das provisões, e portanto, são absolutamente consistentes com as receitas e despesas estimadas e apresentadas no relatório de avaliação atuarial e no DRAA.

O custo normal, pelo método adotado do Crédito Unitário Projetado (PUC), representa uma fração do custo total de cada benefício, que é destacada a cada ano por benefício.

Classe	Variável	Descrição	Fórmula Cálculo
Folhas	FOLHA_X	Valor da folha salarial anual com crescimento constante	5.4 se u
Salariais	FOLHA	Valor da folha salarial anual	5.4 e e
Receitas sobre	RCTBSERV	Receita anual da contribuição normal do ativo	5.4 lt &
a Folha de	RCTBPREF	Receita anual da contribuição normal do Ente Público sobre a atividade	5.4 % in
Ativos e Inativos	RCTBADICPREFA	Receita anual da contribuição adicional do Ente Público sobre atividade	5.4 Assinado Digital 5.4-Vet
Pensão por	DPMA	Valor Anual da Despesa	5.4-Vg 12
Morte	CNPMA	Valor Anual do Custo Normal	5.0.3⊆ 등
Worte	RPMA	Receita Anual do Segurado	5.4-Veg
	DAI	Valor Anual da Despesa	5.1-líᡛ ∺
Invalidez	CNAI	Valor Anual do Custo Normal	5.0.3 DA
	RAI	Receita Anual do Segurado	5.1-IID A
Pensão por	DPMAI	Valor Anual da Despesa	5.1-IIV
Morte de	CNPMAI	Valor Anual do Custo Normal	5.0.3∄ ₽
Inválido	RPMAI	Receita Anual do Segurado	5.1-Ⅱੴ ≦
Anacantadaria	DATS	Valor Anual da Despesa	5.1-kg (V
Aposentadoria por Tempo de	CNATS	Valor Anual do Custo Normal	5.0.3⊖ ∑
Contribuição	RATS	Receita Anual do Segurado	5.1-ਰਿ ਨ੍ਹ
Continuação	RCFATS	Receita de Compensação Financeira	5.5-II E
	DAV	Valor Anual da Despesa	5.1-1 🛱 🏱
Aposentadoria	CNAV	Valor Anual do Custo Normal	5.0.3 $\stackrel{.}{\cancel{4}}$
por Idade	RAV	Receita Anual do Segurado	5.1-l ² cf
	RCFAV	Receita de Compensação Financeira	5.5-Ⅱ∯
	DPROF	Valor Anual da Despesa	5.1-lģ
Aposentadoria	CNPROF	Valor Anual do Custo Normal	5.0.3 $^{\circ}$
do Professor	RPROF	Receita Anual do Segurado	5.1-l ^e g
	RCFPROF	Receita de Compensação Financeira	5.5-II <u>Ė</u>
	DMILI	Valor Anual da Despesa	5.1-l <u>4</u>
Aposentadoria	CNMILI	Valor Anual do Custo Normal	5.0.3₹
do Militar	RMILI	Receita Anual do Segurado	5.1-lੴ
	RCFMILI	Receita de Compensação Financeira	5.5-II🗒
Dovoroão dos	DPMI	Valor Anual da Despesa	5.5-I [®]
Reversão das Aposentadorias	CNPMI	Valor Anual do Custo Normal	5.1-l
em Pensão	RPMI	Receita Anual do Segurado	5.5-II
elli relisau	RCFPMI	Receita de Compensação Financeira	5.5-III

Classe	Variável	Descrição	Fórmula Cálculo
Aposentadoria	DIATS	Despesas com aposentadoria por tempo de inativo	5.2-l
Normal por	RIATS	Receita vigente com aposentadoria por tempo de inativo	5.2-l
Tempo de Serviço, Idade e Compulsória		Receita de compensação financeira com aposentadoria por tempo de inativo	5.5-l
Reversão de	DIPMI	Despesas com reversão de pensão de inativo	5.2-II
Aposentadorias	RIPMI	Receita vigente com reversão de pensão de inativo	5.2-II
em Pensão	RCFIN_IN	Receita de compensação financeira com reversão de inativo	5.5-l
Involidor	DIAI	Despesas com aposentadoria de inativo inválido	5.2-III
Invalidez	RIAI	Receita vigente com aposentadoria de inativo inválido	5.2-III
Reversão de	DIPMAI	Despesas com pensão por morte de inativo inválido	5.2-IV
Invalidez em Pensão	RIPMAI	Receita vigente pensão por morte de inativo inválido	5.2-IV
D	DIPM	Despesas com pensão	5.2-V
Pensão por Morte	RIPM	Receita vigente com pensão	5.2-V
WIOITE	RICFIN_PM	Receita de compensação financeira com pensão	5.5-I

4.1. CRITÉRIOS DO CUSTEIO ADMINISTRATIVO

4.2. FORMULAÇÕES DE CÁLCULO DO CUSTEIO ADMINISTRATIVO

CRITÉRIOS DO CUSTEIO ADMINISTRATIVO

Conforme definido na legislação previdenciária de cada ente público.

FORMULAÇÕES DE CÁLCULO DO CUSTEIO ADMINISTRATIVO

Na apuração do resultado atuarial, desconsideramos do valor atual das receitas expresidados do percentual destinado ao custeio administrativo.

EXPRESSÃO DE CÁLCULO E METODOLOGIA PARA A CONSTITUIÇÃO DE FUNDO INISTRATIVO

Não avaliamos a constituição do fundo administrativo, composto pelas sobras das administrativas em relação aos gastos efetivos. valor do percentual destinado ao custeio administrativo.

4.3. EXPRESSÃO DE CÁLCULO E METODOLOGIA PARA A CONSTITUIÇÃO DE FUNDO **ADMINISTRATIVO**

receitas administrativas em relação aos gastos efetivos.

5. FORMULAÇÕES MATEMÁTICAS E METODOLOGIAS DE CÁLCULO

Todos os cálculos atuariais serão baseados no fluxo anual de receitas e despesas denciárias descritos no item 3.8 desta NTA.

Os valores totais atuais de benefícios e contribuições futuras serão obtidos pe previdenciárias descritos no item 3.8 desta NTA.

REGIME FINANCEIRO E MÉTODO DE FINANCIAMENTO

Todos os benefícios previdenciários serão calculados pelo Regime Financeiro de la cara de juros e desconto atuarial. totalização dos valores anuais com a aplicação da taxa de juros e desconto atuarial.

5.0. REGIME FINANCEIRO E MÉTODO DE FINANCIAMENTO

5.0.1. REGIME FINANCEIRO

Capitalização.

Neste regime, as contribuições estabelecidas no plano de custeio, a serem pagas pelo ente federativo, pelos segurados ativos e inativos e pelos pensionistas, acrescidas ao patrimônio existente, às receitas por ele geradas e a outras espécies de aportes, sejam suficientes para a formação dos recursos garantidores a cobertura dos compromissos aff5-4b1b08d1b85a futuros do plano de benefícios

5.0.2. MÉTODO DE FINANCIAMENTO

Método de financiamento é a metodologia adotada para estabelecer o nível de constituição das reservas necessárias à cobertura dos benefícios estruturados no regime financeiro de capitalização, em face das características biométricas, demográficas, econômicas e financeiras dos segurados e beneficiários do RPPS.

Todos os benefícios previdenciários serão calculados pelo Método Financiamento PUC (Projected Unit Credit ou Crédito Unitário Projetado), onde o custo é calculado com base em frações anuais projetadas deste a idade do início da contribuição do segurado até a idade de aposentadoria estimada.

5.0.3. CÁLCULO DO CUSTO NORMAL Pelo método de financiamento do Custo Unitário Projetado (PUC), calculamos gog percentual do Custo Normal (CNt), compreendido em anos da idade na da avaliação a€ a idade na data da aposentadoria e o percentual do Serviço Passado (SPt), compreendido \$\frac{1}{2}\$

entre a idade de data de início de atividade e a idade da data da avaliação, amb de proporcionalmente ao tempo total compreendido ente a idade de início de atividade e didade de aposentadoria: $FatCN^t = \frac{1}{(r-x_0)} \quad CN^t = FatCN^t \quad (r-x)$ $SP^t = 1 - CN^t$ x = idade atual do segurado ativo $x_0 = idade de início de atividade do segurado ativo no ente <math display="block">r = idade \ de \ aposentadoria \\ t = período \ anual \ a \ calcular$ Para cada benefício a conceder é calculado o valor do Custo Normal, utilizando o fator utilizando (CNt) multiplicado pelo Valor Atual do benefício e o percentual deste

$$SP^t = 1 - CN^t$$

o fator utilizando (CNt) multiplicado pelo Valor Atual do benefício e o percentual deste custo em relação à Folha Salarial Futura.

5.1. EXPRESSÕES DE CÁLCULO DOS BENEFÍCIOS PREVIDENCIÁRIOS A CONCEDER

L. EXPRESSÕES DE CÁLCULO DOS BENEFÍCIOS PREVIDENCIÁRIOS A CONCEDER

I. Benefício a conceder de aposentadoria de válidos (por idade, tempo de contribuição dessor, militar e compulsória)

a) regime financeiro: Capitalização (item 5.0.3)

b) método de financiamento: Crédito Unitário Projetado (PUC) (item 5.0.2)

c) formulações para o cálculo do benefício inicial:

Se for benefício integral: $Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$ Se for pela media: conforme detalhado no item 3.7 - II

d) formulações para o cálculo do custo normal: (item 5.0.3)

e) formulações para o valor atual dos benefícios futuros a conceder (VABFa©) abertas ao nível de anuidades, probabilidados o fotores financeiros a conceder (VABFa©) beneficio a conceder de aposentadoria de válidos (por idade, tempo de contribuiçã \vec{p} , ssor, militar e compulsória)

a) regime financeiro: Capitalização (item 5.0.3)
b) método de financiamento: Crédito Unitário Projetado (PUC) (item 5.0.2)
c) formulações para o cálculo do benefício inicial:

Se for benefício integral: $Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^{x}}$ Se for pela media: conforme detalhado no item 3.7 - II
d) formulações para o cálculo do custo normal: (item 5.0.3)
e) formulações para o valor atual dos benefícios futuros a conceder (VABFa©)
abertas ao nível de anuidades, probabilidades e fatores financeiros se aplicável professor, militar e compulsória)

$$Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$$

- abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica, para os segurados atuais e para expectativa de reposição de segurados ativos: $\frac{alores \, Anuais \, do \, Encargo \, de \, Aposentadoria}{VAE^{ap(t)}} = 13. FC. \, Ben^{ap}._{(r-x+t)} p_x^{aa}$

Valores Anuais do Encargo de Aposentadoria ($VAE^{ap(t)}$):

$$VAE^{ap(t)} = 13.FC.Ben^{ap}._{(r-x+t)\setminus p_x^{aa}}$$

<u>Observação</u>: Calcula-se um $VAE^{ap(t)}$ para cada ano (t) de (r-x) até (ω -r)

<u>Valor Total do Encargo Futuro de Aposentadoria</u> (*VTEF*^{ap}):

$$VTEF^{ap} = \sum_{t=r-x}^{\omega-r} v^{t+1} \cdot VAE^{ap(t)}$$

Sendo:

 Ben^{ap} = benefício projetado de aposentadoria a conceder, considerando a média ou última remuneração e crescimento salarial

x = idade atual do segurado ativo

r = idade de aposentadoria

 $t = número anos a calcular, de (r-x) a (\omega-r)$

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $(r-x+t)/p_x^{aa}$ = probabilidade de uma pessoa de idade (x) atingir a idade válida

vallua $v^t = fator \ de \ descapitalização \ financeira \ de \ (t) \ anos$ f) formulações para o valor atual das contribuições futuras a conceder (VACFa \mathbb{C})

Valores Anuais das Contribuições a Receber de Ativos (VACat(t)):

$$VAC^{at(t)} = VAFS^{(t)}.FC.\tau^{at}$$

<u>Valor Total das Contribuições a Receber de Ativos (VTCF^a):</u>

$$VTCF^{a} = \sum_{t=0}^{r-x} v^{t+1} \cdot VAC^{a(t)}$$

Valores Anuais das Contribuições a Receber do Ente Sobre de Ativos (VAC^{pa(t)}

$$VAC^{pa(t)} = VAFS^{(t)}.FC.\tau^{pa}$$

Valor Total das Contribuições Futuras a Receber do Ente Sobre Ativos (VTCF^{pa}):

$$VTCF^{pa} = \sum_{t=0}^{r-x} v^{t+1} \cdot VAC^{pa(t)}$$

Sendo:

 τ^{at} = taxa de contribuição dos segurados ativos

 au^{pa} = taxa de contribuição total do Ente sobre a folha de ativos

 v^t = fator de descapitalização financeira de (t) anos

x = idade atual do segurado ativo

r = idade de aposentadoria

FC = fator de capacidade

t = número anos a calcular, de zero a (r-x)

Se
$$(Ben^{ap} - LI) > 0$$
:
$$VAC^{ap(t)} = 13. (Ben^s - LI). FC. \tau^i._{(r-x+t)} p_x^{aa}$$

Valor Total das Contribuições Futuras a Receber de Aposentadoria (VTCFap):

$$VTCF^{ap} = \sum_{t=r-x}^{\omega-r} v^{t+1} \cdot VACF^{ap(t)}$$

Se $(Ben^{ap}-LI)>0$: $VAC^{ap(t)}=13.\,(Ben^s-LI).FC.\tau^i._{(r-x+t)}/p_x^{aa}$ Observação: Calcula-se um $VAC^{ap(t)}$ para cada ano (t) de (r-x) até $(\omega$ -r)Ior Total das Contribuições Futuras a Receber de Aposentadoria $(VTCF^{ap})$: $VTCF^{ap}=\sum_{t=r-x}^{\omega-r}v^{t+1}.VACF^{ap(t)}$ Sendo: $Ben^{ap}=benefício projetado de aposentadoria a conceder$ LI=Limite de isenção (teto do RGPS vigente na data base do cálculo) x=i idade atual do segurado ativo r=i idade de aposentadoria $\omega=u$ última idade de uma tábua de mortalidade t=n úmero anos a calcular, de (r-x) a $(\omega$ -r) FC=f ator de capacidade $(r-x+t)/p_x^{aa}=p$ probabilidade de uma pessoa de idade (x) atingir a idade (r+t) válida válida

 au^i = taxa de contribuição dos segurados inativos

 v^t = fator de descapitalização financeira de (t) anos

- II. Benefício a conceder de pensão por morte devida a dependente de segurado válido versão):

 a) regime financeiro: Capitalização (item 5.0.3)

 b) método de financiamento: Crédito Unitário Projetado (PUC) (item 5.0.2)

 c) formulações para o cálculo do benefício inicial:

 Se for benefício integral: $Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$ Se for pela media: Conforme detalhado no item 3.7 II

 d) formulações para o cálculo do custo normal: (item 5.0.3)

 e) formulações para o valor atual dos benefícios futuros a conceder (VABFaC) abertago para o pível de apuidades, probabilidades e fatores financeiros se aplicável acon pível de apuidades, probabilidades e fatores financeiros se aplicável acon probabilidades e fatores financeiros se aplicável acon pível de apuidades probabilidades e fatores financeiros se aplicável acon pível de apuidades probabilidades e fatores financeiros se aplicável acon pível de applicación probabilidades e fatores financeiros se aplicável acon pível de applicación probabilidades probabilidades e fatores financeiros se aplicável acon pível de applicación probabilidades e fatores financeiros se aplicável acon probabilidades probabilidades probabilidades probabilidades e fatores financeiros se aplicável acon probabilidades probabilidades probabilidades e fatores financeiros se aplicável acon probabilidades probabi (reversão):

$$Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$$

$$VAE^{rapb(j)} = 13.Ben^{rap}.FC._{(r-x+j)\backslash }p_x^{aa}._{(r-x+j)\backslash }q_x$$
$$VAE^{rap(t)} = VAE^{rapb(j)}._{(r-x+t)/}p_x^H$$

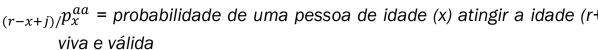
aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a (ω -r)

<u>Valor Total do Encargo Futuro de Reversão de Aposentadoria</u> $(VTEF^{rap})$:

$$VTEF^{rap} = \sum_{t=r-x}^{\omega-r} v^{(t+1)} . VAE^{rap(t)}$$

Sendo:

 Ben^{rap} = benefício projetado de aposentadoria, quando revertido em pensão


x = idade atual do segurado ativo

r = idade de aposentadoria

 $t = número anos a calcular, de zero a (\omega-r)$

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

atingir a idade (r+t) em condições de receber o benefício de pensão v^t = fator de descapitalização financeira de (t) anos

f) formulações para o valor atual das contribuições futuras a conceder (VACFa®)

- III. Benefício a conceder de aposentadoria por invalidez:

$$Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$$

- c) formulações para o cálculo do custo normal: item 5.0.3
- d) formulações para o valor atual dos benefícios futuros a conceder (VABFaC) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica, para os segurados atuais e para a expectativa de reposição de segurados ativos:

Valores Anuais do Encargo de Aposentadoria por Invalidez (VAEai):

$$VAE^{ai(t)} = 13.Ben^{ai}._{t\setminus}p_x^{aa}._{t\setminus}I_x$$

<u>Observação</u>: Calcula-se um $VAE^{ai(t)}$ para cada ano (t) de zero a (r-x)

Valor Total do Encargo Futuro de Aposentadoria por Invalidez (VTEFai):

$$VTEF^{ai} = \sum_{t=0}^{r-x} v^{t+1} \cdot VAEF^{ai(t)}$$

abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica, para os segurados atuais e para 👼 expectativa de reposição de segurados ativos:

Valores Anuais das Contribuições a Receber de Aposentadoria por Invalidez em Atividade(VAC^{ai}):

Se
$$(Ben^{ai} - LI) > 0$$
:

$$VAC^{ai(t)} = 13. (Ben^{ai} - LI). \tau^{i}. FC._{t} p_{x}^{aa}._{t} I_{x}$$

Observação: Calcula-se um $VAC^{ai(t)}$ para cada ano (t) de zero a (r-x)

Valor Total das Contribuições Futuras a Receber de Aposentadoria por Invalidez em Atividade (VTCFai):

$$VTCF^{ai} = \sum_{t=0}^{r-x} v^{t+1} \cdot VAC^{ai(t)}$$

Sendo:

 Ben^{ai} = benefício projetado de aposentadoria por invalidez a conceder

LI = Limite de isenção (teto do RGPS vigente na data base do cálculo)

x = idade atual do segurado ativo

- $x = idade atual do segurado ativo \\ r = idade de aposentadoria \\ t = número anos a calcular, de zero a (r-x) \\ \omega = última idade de uma tábua de mortalidade \\ t/p_x^{aa} = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) viva explicible proportion de idade (x) atingir a idade$ invalidez (reversão):

$$Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$$

- e) formulações para o valor atual dos benefícios futuros a conceder (VABFaĈ) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica, para os segurados atuais e para a expectativa de reposição de segurados:

Valores Anuais do Encargo de Reversão de Aposentadoria por Invalidez em Atividade (VAE^{rai}):

$$VAE^{raib(j)} = 13.Ben^{rai}.FC._{j}q_x^{ai}$$

$$VAE^{rai(t)} = VAE^{raib(j)} \cdot {}_{t/}p_x^H$$

<u>Observação</u>: Calcula-se um $VAE^{raib(j)}$ para cada ano (j) de zero a (r-x) e aplicase a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a (ω r)

Valor Total do Encargo Futuro de Reversão de Aposentadoria por Invalidez 唱해

$$VTEF^{rai} = \sum_{t=0}^{\omega-r} v^{t+1} . VAE^{rai(t)}$$

or Total do Encargo Futuro de Reversão de Aposentadoria por Invalidez $\frac{1}{2}$ Atividade ($VTEF^{rai}$): $VTEF^{rai} = \sum_{t=0}^{\omega-r} v^{t+1}.VAE^{rai(t)}$ Sendo: $Ben^{rai} = benefício projetado de aposentadoria por invalidez a conceder x = idade atual do segurado ativo r = idade de aposentadoria t = número anos a calcular, de zero a (<math>\omega$ -r) j = número anos a calcular, de zero a (τ -x) ω = última idade de uma tábua de mortalidade j/q_x^{ai} = probabilidade de uma pessoa de idade (τ) falecer, após invalidar-se, na idade (τ +t)

v^t = fator de descapitalização financeira de (t) anos

f) formulações para o valor atual das contribuições futuras a conceder (VACFa@)

abertas ao nível de anuidades, probabilidades e fatores financeiros

ao benefício e à cura ao benefício e à sua estrutura técnica, para os segurados atuais e para a expectativa de reposição de segurados:

Valores Anuais das Contribuições a Receber de Reversão de Aposentadoria por Invalidez em Atividade (VAC^{rai}):

Se
$$(Ben^{rai}-LI)>0$$
:
$$VAC^{raib(j)}=13.\left(Ben^{rai}-LI\right).FC.\tau^{i}._{j\backslash}q_{x}^{ai}$$

$$VAC^{rai(t)}=VAC^{raib(j)}._{t/}p_{x}^{H}$$

<u>Observação</u>: Calcula-se um $VAC^{raib(j)}$ para cada ano (j) de zero a (r-x) e aplicase a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a (ω r)

Documento Assinado Digitalmente por: DANIELE DA SILVA FERREIRA

$$VTCF^{rai} = \sum_{t=0}^{\omega-r} v^{t+1} . VAC^{rai(t)}$$

na idade (x+t) t/p_x^H = probabilidade do grupo familiar de uma pessoa de idade (x) atingir idade (x+t) em condições de receber o benefício de pensão t^i = taxa de contribuição dos segurados inativos

 au^i = taxa de contribuição dos segurados inativos

 v^t = fator de descapitalização financeira de (t) anos

- V. Benefício a conceder de pensão por morte de segurado em atividade:
 - a) regime financeiro: item 5.0.1
 - b) método de financiamento: item 5.0.2
 - c) formulações para o cálculo do benefício inicial:

Se for benefício integral:

$$Ben^{ap} = REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$$

Se for pela media: conforme detalhado no item 3.7 - II

- d) formulações para o cálculo do custo normal: item 5.0.3
- e) formulações para o valor atual dos benefícios futuros a conceder (VABFaC) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica, para os segurados atuais e para a expectativa de reposição de segurados ativos:

Documento Assinado Digitalmente por: DANIELE DA SILVA FERREIRA

Valores Anuais do Encargo de Pensão por Morte em Atividade ($VAE^{pm(t)}$):

$$VAE^{pmb(j)} = 13.Ben^{pm}.FC._{j}q_x^{aa}$$

$$VAE^{pm(t)} = VAE^{pmb(j)} \cdot {}_{t/}p_x^H$$

ores Anuais do Encargo de Pensão por Morte em Atividade ($VAE^{pm(t)}$): $VAE^{pmb(j)} = 13. Ben^{pm}. FC._{j\backslash}q_x^{aa}$ $VAE^{pm(t)} = VAE^{pmb(j)}._{t/}p_x^H$ $Observação: Calcula-se um <math>VAE^{pmb(j)}$ para cada ano (j) de zero a (r-x) e aplicatival de la composition della composition della composition della compos Observação: Calcula-se um $VAE^{pmw(f)}$ para cada ano (j) de zero a (r-x) e aplicado se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a (de processan Codigo do documento r)

or Total do Encargo Futuro de Pensão por Morte em Atividade ($VTEF^{pm}$): $VTEF^{pm} = \sum_{t=0}^{\omega-r} v^{t+1} . VAE^{pm(t)}$ Sendo: $En en el pensão por morte na atividade ex = idade atual do segurado ativo reidade de aposentadoria tenúmero anos a calcular, de zero a (<math>\omega$ -r)

<u>Valor Total do Encargo Futuro de Pensão por Morte em Atividade(VTEF^{pm}):</u>

$$VTEF^{pm} = \sum_{t=0}^{\omega-r} v^{t+1} \cdot VAE^{pm(t)}$$

Sendo:

 Ben^{pm} = benefício projetado de pensão por morte na atividade

x = idade atual do segurado ativo

r = idade de aposentadoria

 $t = número anos a calcular, de zero a (<math>\omega$ -r)

j = número anos a calcular, de zero a (r-x)

FC = fator de capacidade

 ω = última idade de uma tábua de mortalidade

 $_{i}/q_{x}^{aa}$ = probabilidade de uma pessoa ativa de idade (x) falecer, sem invalidarse, na idade (x+t)

 $_{t/}p_{x}^{H}$ = probabilidade do grupo familiar de uma pessoa de idade (x) atingir a idade (x+t) em condições de receber o benefício de pensão

 v^t = fator de descapitalização financeira de (t) anos

f) formulações para o valor atual das contribuições futuras a conceder (VACFaC) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica, para os segurados atuais e para a expectativa de reposição de segurados ativos:

Se
$$(Ben^{pm}-LI)>0$$
:
$$VAC^{pmb(j)}=13.\,(Ben^{pm}-LI).FC.\tau^{i}._{j\backslash q_{x}}^{aa}$$

$$VAC^{pm(t)}=VAC^{pm(j)}._{t/p_{x}}^{H}$$
 Observação: Calcula-se um $VAC^{pmb(j)}$ para cada ano (j) de zero a $(r-x)$ e aplication of the second of the second

Observação: Calcula-se um $VAC^{pirco}(J)$ para cada ano (j) de zero a (r-x) e aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a $(b^{midiaDocsem}Coligo do documento: Acordo d$

Valor Total das Contribuições de Pensão por Morte em Atividade (VTCF^{pm}):

$$VTCF^{pm} = \sum_{t=0}^{\omega-r} v^{t+1} \cdot VAC^{pm(t)}$$

Sendo:

 Ben^{pm} = benefício projetado de pensão por morte na atividade

LI = Limite de isenção (teto do RGPS vigente na data base do cálculo)

x = idade atual do segurado ativo

r = idade de aposentadoria

j = número anos a calcular, de zero a (r-x)

 $t = número anos a calcular, de zero a (\omega-r)$

FC = fator de capacidade

 ω = última idade de uma tábua de mortalidade

 $_{i}/q_x^{aa}$ = probabilidade de uma pessoa ativa de idade (x) falecer, sem invalidarse, na idade (x+t)

 t_{t}/p_{x}^{H} = probabilidade do grupo familiar de uma pessoa de idade (x) atingir a idade (x+t) em condições de receber o benefício de pensão

 τ^i = taxa de contribuição dos segurados inativos

 v^t = fator de descapitalização financeira de (t) anos

5.2. EXPRESSÕES DE CÁLCULO DOS BENEFÍCIOS PREVIDENCIÁRIOS CONCEDIDE

I. Benefícios concedidos de Aposentadoria de válidos (por Idade, TC e Compulsória)

- a) regime financeiro: item 5.0.1 b) formulações para o valor atual dos benefícios concedidos (VABFc) abertas apode nível de anuidades, probabilidades e fatores financeiros, se aplicável benefício e à sua estrutura técnica:

Valores Anuais do Encargo de Benefício Concedido não Decorrente de Invalides

$$VAE^{bap(t)} = 13.Ben^{ap}.FC._{t/}p_{x}$$

 $\begin{array}{c} \underline{\text{Valores Anuais do Encargo de Benefício Concedido não Decorrente de Invalidada }} \\ (VAE^{bap(t)}): \\ VAE^{bap(t)} = 13. \textit{Ben}^{ap}. \textit{FC}._{t/p_X} \\ \underline{\text{Observação}}: \textit{Calcula-se um VAE para cada ano (t) de zero até (ω-x}) \\ \underline{\text{Valor Total do Encargo Futuro de Benefício Concedido não Decorrente de Invalidada }} \\ (VTEF^{bap}): \\ \underline{\text{VTEF}}^{bap} = \sum_{t=0}^{\omega-x} v^{t+1}. \textit{VAE}^{bap(t)} \\ \underline{\text{Sendo}}: \\ \underline{\text{Sendo}}: \\ \\ \underline{\text{Sendo}}: \\ \end{array}$

$$VTEF^{bap} = \sum_{t=0}^{\omega - x} v^{t+1} . VAE^{bap(t)}$$

Sendo:

 Ben^{ap} = valor mensal do benefício de aposentadoria

x = idade atual do aposentado

 $t = número anos a calcular, de zero a (<math>\omega$ -x)

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $p_x = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) válida ou$ inválida

 v^t = fator de descapitalização financeira de (t) anos

c) formulações para o valor atual das contribuições futuras concedidos (VACFc) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica:

Valores Anuais das Contribuições de Aposentados ($VAC^{bap(t)}$):

Se
$$(Ben^{ap}-LI)>0$$
:

 $VAC^{bap(t)}=13.\ (Ben^{ap}-LI).\ FC.\ \tau^i.\ _{t/p_x},\$ se válido

Ou

 $VAC^{bap(t)}=13.\ (Ben^{ap}-LI).\ FC.\ \tau^i.\ _{t/p_x},\$ se inválido.

Observação: Calcula-se um $VAC^{ap(t)}$ para cada ano (t) de zero até (ω -x)

Ior Total das Contribuições Futuras de Aposentados ($VTCF^{bap}$):

 $VTCF^{bap}=\sum_{t=0}^{\omega-x}v^{t+1}.\ VAC^{bap(t)}$

Sendo:

 $Ben^{ap}=valor\ mensal\ da\ aposentadoria$
 $LI=Limite\ de\ isenção\ (teto\ mensal\ do\ RGPS\ vigente\ na\ data\ base\ do\ cálcula)$
 $x=i$ idade atual do beneficiário

 $t=n$ úmero anos a calcular, de zero a (ω -x)

 $FC=f$ fator de capacidade

 $\omega=\omega$ última idade de uma tábua de mortalidade

 $t/p_x=p$ probabilidade de uma pessoa de idade (x) atingir a idade (x +t) válida v inválida

Valor Total das Contribuições Futuras de Aposentados ($VTCF^{bap}$):

$$VTCF^{bap} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAC^{bap(t)}$$

inválida

 t/p_x^i = probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+j)

 au^i = taxa de contribuição dos segurados inativos

 v^t = fator de descapitalização financeira de (t) anos

Valores Anuais das Contribuições do Ente Sobre Inativos ($VAC^{pb(t)}$):

 $VAC^{pb(t)} = Ben.FC.\tau^{pb}._{t}p_{x}$, se aposentado;

 $VAC^{pb(t)} = Ben.FC.\tau^{pb}._{t\backslash}p_x^i$, se inválido;

 $VAC^{pb(t)} = Ben.FC.\tau^{pb}._{t} p_{x}$, se pensionista.

Observação: Calcula-se um $VAC^{pb(t)}$ para cada ano (t) de zero até (ω -x)

Valor Total das Contribuições Futuras do Ente Sobre Inativos ($VTCF^{pb}$):

$$VTCF^{pb} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAC^{pb(t)}$$

- $VTCF^{pb} = \sum_{t=0}^{\omega-x} v^{t+1} . VAC^{pb(t)}$ $\frac{\text{Sendo:}}{\text{Ren}}$ Ben = benefício de aposentadoria ou pensão x = idade atual do beneficiário $t = \text{número anos a calcular, de zero a (ω-x$)}$ $\omega = \text{última idade de uma tábua de mortalidade}$ $t/p_x = \text{probabilidade de uma pessoa de idade (x) atingir a idade (x+t) válida dividida}$ $t/p_x^i = \text{probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) válida of the probabilidade (x+t) válidade (x+t) válidade$ são):
 a) regime financeiro: item 5.0.1
 b) formulações para o valor atual dos benefícios concedidos (VABFc) abertas æ (reversão):

 - nível de anuidades, probabilidades e fatores financeiros, se aplicável & benefício e à sua estrutura técnica:

Valores Anuais do Encargo de Reversão de Aposentadoria Concedida Não Decorrente de Invalidez ($VAE^{brap(t)}$):

$$VAE^{brapb(j)} = 13.Ben^{rap}.FC._{j/p_x._{j}\backslash q_x}$$

$$VAE^{brap(t)} = VAE^{brapb(j)} \cdot {}_{t/}p_x^H$$

<u>Observação</u>: Calcula-se um $VAE^{brapb(j)}$ para cada ano (j) de zero a (ω -x) e aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (i) a $(\omega - x)$

Valor Total do Encargo Futuro de Reversão de Aposentadoria Concedida Decorrente de Invalidez ($VTEF^{brap}$):

$$VTEF^{brap} = \sum_{i=0}^{\omega - x} v^{t+1}.VAE^{brap(t)}$$

Decorrente de Invalidez ($VTEF^{brap}$): $VTEF^{brap} = \sum_{t=0}^{\omega-x} v^{t+1}.VAE^{brap(t)}$ Sendo: $Ben^{rap} = valor \ mensal \ do \ benefício \ de \ aposentadoria \ quando \ revertido \ empensão$ $x = idade \ atual \ do \ beneficiário$ $t = número \ anos \ a \ calcular, \ de \ zero \ a \ (\omega-x)$ $\omega = \text{última idade de uma tábua de mortalidade}$ FC = fator de capacidade $j/p_x = \text{probabilidade de uma pessoa de idade (x) atingir a idade (x+j) válida de inválida}$

inválida

 $q_x = probabilidade de uma pessoa de idade (x) falecer na idade (x+j) válida$ ou inválida

 t_{t}/p_{x}^{H} = probabilidade do grupo familiar de uma pessoa de idade (x) atingir \hat{a}

idade (x+t) em condições de receber o benefício de pensão $v^t = fator de descapitalização financeira de (t) anos$ c) formulações para o valor atual das contribuições futuras concedidos (VACFc) abertas ao nível de anuidades, probabilidades o fotores financeira. ao benefício e à sua estrutura técnica:

Valores Anuais das Receitas das Contribuições de Aposentados Decorrentes de Reversão de Aposentadoria ($VAC^{brap(t)}$):

Se
$$(Ben^{rap} - LI) > 0$$
:

$$VAC^{brapb(j)}=13.\,(Ben^{rap}-LI).\,FC.\, au^i._{j\backslash}p_x._{j\backslash}q_x,\,$$
 se válido

ou

$$VAC^{brapb(j)} = 13. (Ben^{rap} - LI). FC. \tau^i._{j \setminus p_x^i._{j \setminus q_x^i}}, \text{ se inválido}$$

$$VAC^{brap(t)} = VAC^{brapb(j)} \cdot {}_{t/}p_x^H$$

<u>Observação</u>: Calcula-se um $VAC^{brapb(j)}$ para cada ano (j) de zero a (ω -x) e aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (i) a $(\omega - x)$

Documento Assinado Digitalmente por: DANIELE DA SILVA FERREIRA

Valor Total das Receitas das Contribuições Futuras de Aposentados Decorre de Reversão de Aposentadoria (VTCF^{brap}):

$$VTCF^{brap} = \sum_{t=0}^{\omega - x} v^{t+1} . VAC^{brap(t)}$$

 $VTCF^{brap} = \sum_{t=0}^{\omega-x} v^{t+1} . VAC^{brap(t)}$ $\frac{Sendo:}{Ben^{rap}} = benefício \ de \ aposentadoria \ quando \ convertido \ em \ pensão}$ $LI = Limite \ de \ isenção \ (teto \ do \ RGPS \ vigente \ na \ data \ base \ do \ cálculo)$ $x = idade \ atual \ do \ beneficiário$ $t = número \ anos \ a \ calcular, \ de \ zero \ a \ (\omega-x)$ $j = número \ anos \ a \ calcular, \ de \ zero \ a \ (\omega-x)$ $FC = fator \ de \ capacidade$ $\omega = \'ultima \ idade \ de \ uma \ t\'abua \ de \ mortalidade$ mortalidade mortalidade $mortalidade \ (x) \ atingir \ a \ idade \ (x+j) \ v\'alida \ ou \ inv\'alida$ $mortalidade \ de \ uma \ pessoa \ de \ idade \ (x) \ falecer \ na \ idade \ (x+j) \ v\'alida \ ou \ inv\'alida$ $mortalidade \ de \ uma \ pessoa \ de \ idade \ (x) \ falecer \ na \ idade \ (x+j) \ v\'alida \ ou \ inv\'alida$ ou inválida

 $p_x^i = \text{probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+<math>\hat{\beta}$

 i/q_x^i = probabilidade de uma pessoa inválida de idade (x) falecer na idade (x+ $\frac{1}{2}$)

 t_t/p_x^H = probabilidade do grupo familiar de uma pessoa de idade (x) atingir $\frac{1}{2}$ idade (x+t) em condições de receber o benefício de pensão

 τ^i = taxa de contribuição dos segurados inativos

 v^t = fator de descapitalização financeira de (t) anos

Valores Anuais das Receitas das Contribuições do Ente Decorrentes de Reversão de Aposentadoria ($VAC^{rpb(t)}$):

$$VAC^{rpbb(j)} = 13.Ben^p.FC.\tau^{pb}._{j\setminus p_x._{j\setminus q_x}}$$
, se válido

ou

$$VAC^{rpbb(j)} = 13. Ben^p. FC. \tau^{pb}._{j \setminus} p_x^i._{j \setminus} q_x^i$$
, se inválido

$$VAC^{rpb(t)} = VAC^{rpbb(j)}.FC._{t/}p_x^H$$

<u>Observação</u>: Calcula-se um $VAC^{rpbb(j)}$ para cada ano (j) de zero a (ω -x) e aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (i) a (ω -x)

Valor Total das Receitas das Contribuições Futuras do Ente Decorrentes Reversão de Aposentadoria (VTCF^{rpb}):

$$VTCF^{rpb} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAC^{rpb(t)}$$

Reversão de Aposentadoria ($VTCF^{rpb}$): $VTCF^{rpb} = \sum_{t=0}^{\omega-x} v^{t+1}.VAC^{rpb(t)}$ Sendo: $Ben^p = \text{benefício de aposentadoria quando convertido em pensão}$ x = idade atual do beneficiário $t = \text{número anos a calcular, de zero a (ω-x$)}$ $\omega = \text{última idade de uma tábua de mortalidade}$ FC = fator de capacidade LI = Limite de isenção (teto do RGPS vigente na data base do cálculo) $j/p_x = \text{probabilidade de uma pessoa de idade (x) atingir a idade (x+j) válida of inválida
}$ $j/q_x = \text{probabilidade de uma pessoa de idade (x) falecer na idade (x+j) válidade ou inválida$ ou inválida

 μ_i/p_x^i = probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+ $\hat{\beta}$

 i/q_x^i = probabilidade de uma pessoa inválida de idade (x) falecer na idade (x+i)

 $p_x^H = probabilidade do grupo familiar de uma pessoa de idade (x) atingir <math>\frac{1}{2}$ idade (x+t) em condições de receber o benefício de pensão

 τ^{pb} = taxa de contribuição dos segurados inativos

 v^t = fator de descapitalização financeira de (t) anos

- III. Benefícios concedidos de Aposentadoria por invalidez:
 - a) regime financeiro: item 5.0.1
 - b) formulações para o valor atual dos benefícios concedidos (VABFc) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica:

Valores Anuais do Encargo de Aposentadoria Concedida Decorrente de Invalidez $(VAE^{bai(t)})$:

$$VAE^{bai(t)} = 13.Ben^{ai}.FC._{t/}p_x^i$$

<u>Observação</u>: Calcula-se um $VAE^{bai(t)}$ para cada ano (t) de zero até (ω -x)

Valor Total do Encargo Futuro de Aposentadoria Concedida Decorrente de Invalidez (VTEF^{bai}):

 $VTEF^{bai} = \sum_{t=o} v^{t+1} . VAE^{bai(t)}$ $\frac{\text{Sendo}:}{\text{Ben}^{ai}} = \text{valor mensal do benefício de aposentadoria por invalidez}$ x = idade atual do aposentado $t = \text{número anos a calcular, de zero a (ω-x)}$ $\omega = \text{última idade de uma tábua de mortalidade}$ $t_{t}/p_{x}^{i} = \text{probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+$$V^{t} = fator de descapitalização financeira de (t) anos}$ formulações para o valor atual das contribuições futuras concedidos (VACF\(\frac{debago}{debago}\) abentas ao nível de anuidades, probabilidades e fatores financeiros, se aplic\(\frac{debago}{debago}\) ao benefício e à sua estrutura técnica:

alores Anuais das Contribuições de Aposentados (VAC\(\frac{bap(t)}{t}\)):

Se $(Ben^{ap} - LI) > 0$: $VAC^{bap(t)} = 13. (Ben^{ap} - LI). FC. \tau^{i}._{t}/p_{x}, \text{ se válido}$ ou $VAC^{bap(t)} = 13. (Ben^{ap} - LI). FC. \tau^{i}._{t} n^{i}. \text{ se inválido}$ Sendo:

Ben^{ati} = valor mensal do benefício de aposentadoria por invalidez x = i idade atual do aposentado t = número anos a calcular, de zero a $(\omega - x)$ $\omega =$ última idade de uma tábua de mortalidade $t/p_x^i =$ probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t) $v^t =$ fator de descapitalização financeira de (t) anos

Valores Anuais das Contribuições de Aposentados ($VAC^{bap(t)}$):

Se
$$(Ben^{ap} - LI) > 0$$
:
 $VAC^{bap(t)} = 13. (Ben^{ap} - LI). FC. \tau^{i}._{t/p_x}$, se válido

$$VAC^{bap(t)} = 13. (Ben^{ap} - LI). FC. \tau^{i}._{t/p_x^{i}}$$
, se inválido.

<u>Observação</u>: Calcula-se um $VAC^{ap(t)}$ para cada ano (t) de zero até (ω -x)

Valor Total das Contribuições Futuras de Aposentados ($VTCF^{bap}$):

$$VTCF^{bap} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAC^{bap(t)}$$

Sendo:

 Ben^{ap} = valor mensal da aposentadoria

LI = Limite de isenção (teto mensal do RGPS vigente na data base do cálculo)

x = idade atual do beneficiário

 $t = número anos a calcular, de zero a (\omega-x)$

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $_{t/}p_{x}$ = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) válida

 $t/p_x = probabilidade \ de \ uma \ pessoa \ de \ idade \ (x) \ atingir \ a \ idade \ (x+t) \ válida \ inválida \ inválida \ t/p_x^i = probabilidade \ de \ uma \ pessoa \ inválida \ de \ idade \ (x) \ atingir \ a \ idade \ (x+t) \ válida \ t/p_x^i = probabilidade \ de \ uma \ pessoa \ inválida \ de \ idade \ (x) \ atingir \ a \ idade \ (x+t) \ válida \ t/p_x^i = probabilidade \ de \ uma \ pessoa \ inválida \ de \ idade \ (x) \ atingir \ a \ idade \ (x+t) \ válida \ t/t \ validade \ (x+t) \ válida \ verificator \ validade \ validade \ (x+t) \ validade \ v$

Valores Anuais das Contribuições do Ente Sobre Inativos ($VAC^{pb(t)}$):

Valor Total das Contribuições Futuras do Ente Sobre Inativos (VTCF^{pb}):

$$VTCF^{pb} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAC^{pb(t)}$$

x = idade atual do beneficiário

 $t = número anos a calcular, de zero a (\omega-x)$

 ω = última idade de uma tábua de mortalidade

 $p_x = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) válida ou$ inválida

 t/p_x^l = probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+t)

 au^{pb} = taxa de contribuição do Ente sobre benefícios

 v^t = fator de descapitalização financeira de (t) anos

- IV. Benefícios concedidos de Pensão devida a dependente de segurado aposenta por invalidez:
 - a) regime financeiro: item 5.0.1
 - b) formulações para o valor atual dos benefícios concedidos (VABFc) abertas a nível de anuidades, probabilidades e fatores financeiros, se aplicável benefício e à sua estrutura técnica:

$$VAE^{braib(j)} = 13.Ben^{rai}.FC._{i}/p_x^i._{i}\sqrt{q_x^i}$$

$$VAE^{brai(t)} = VAE^{braib(j)} \cdot {}_{t/}p_x^H$$

benefício e à sua estrutura tecrnica.

/alores Anuais do Encargo de Reversão de Aposentadoria Concedida Decorrente de Invalidez (VAE^{brai}): $VAE^{braib(j)} = 13. Ben^{rai}. FC._{j/}p_x^i._{j/}q_x^i$ $VAE^{braib(j)} = VAE^{braib(j)}._{t/}p_x^H$ Observação: Calcula-se um $VAE^{braib(j)}$ para cada ano (j) de zero a (ω -x) aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a (ω -x)

Valor Total do Encargo Futuro de Reversão de Aposentadoria Concedida Decorrente de Invalidez ($VTEF^{brai}$):

$$VTEF^{brai} = \sum_{t=0}^{\omega-x} v^{t+1}.VAE^{brai(t)}$$

Sendo:

 Ben^{rai} = valor mensal do benefício de aposentadoria por invalidez quando revertido em pensão

x = idade atual do aposentado

 $t = número anos a calcular, de zero a (\omega-x)$

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $_{i}/p_{x}^{i}$ = probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+j)

 i/q_x^i = probabilidade de uma pessoa inválida de idade (x) falecer na idade (x+j)

 t/p_x^H = probabilidade do grupo familiar de uma pessoa de idade (x) atingir a idade (x+t) em condições de receber o benefício de pensão

 v^t = fator de descapitalização financeira de (t) anos

c) formulações para o valor atual das contribuições futuras concedidos (VACF@) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica:

Valores Anuais das Receitas das Contribuições de Aposentados Decorrentes Reversão de Aposentadoria ($VAC^{brap(t)}$):

Se
$$(Ben^{rap} - LI) > 0$$
:

$$VAC^{brapb(j)}=13.\,(Ben^{rap}-LI).\,FC.\, au^i._{j\backslash}p_x._{j\backslash}q_x$$
, se válido

ou

$$VAC^{brapb(j)}=13.\,(Ben^{rap}-LI).\,FC.\, au^i._{j\backslash}p^i_x._{j\backslash}q^i_x,$$
 se inválido

$$VAC^{brap(t)} = VAC^{brapb(j)}._{t/}p_x^H$$

<u>Observação</u>: Calcula-se um $VAC^{brapb(j)}$ para cada ano (j) de zero a (ω -x) aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (j) a (ω-x)

Valor Total das Receitas das Contribuições Futuras de Aposentados Decorrentes

5-aff5-4b1b08d1b85a de Reversão de Aposentadoria (VTCFbrap):

$$VTCF^{brap} = \sum_{t=0}^{\omega - x} v^{t+1} . VAC^{brap(t)}$$

Sendo:

Ben^{rap} = benefício de aposentadoria quando convertido em pensão

LI = Limite de isenção (teto do RGPS vigente na data base do cálculo)

x = idade atual do beneficiário

 $t = número anos a calcular, de zero a (<math>\omega$ -x)

 $j = número anos a calcular, de zero a (<math>\omega$ -x)

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $_{i}/p_{x}$ = probabilidade de uma pessoa de idade (x) atingir a idade (x+j) válida ou inválida

 $_{j/}q_{x}$ = probabilidade de uma pessoa de idade (x) falecer na idade (x+j) válida ou inválida

 $_{i}/p_{x}^{i}$ = probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+j)

 $_{i}/q_{x}^{i}$ = probabilidade de uma pessoa inválida de idade (x) falecer na idade (x+j)

 p_{x}^{H} = probabilidade do grupo familiar de uma pessoa de idade (x) ating idade (x+t) em condições de receber o benefício de pensão $\tau^i = taxa \ de \ contribuição \ dos \ segurados \ inativos \\ v^t = fator \ de \ descapitalização \ financeira \ de \ (t) \ anos$ $\frac{v^t}{v^t} = taxa \ de \ contribuição \ dos \ segurados \ de \ (t) \ anos$ $\frac{v^t}{v^t} = taxa \ de \ descapitalização \ financeira \ de \ (t) \ anos$ $\frac{v^t}{v^t} = taxa \ de \ descapitalização \ financeira \ de \ (t) \ anos$ $\frac{v^t}{v^t} = taxa \ de \ descapitalização \ financeira \ de \ (t) \ anos$ idade (x+t) em condições de receber o benefício de pensão

de Aposentadoria ($VAC^{rpb(t)}$):

$$VAC^{rpbb(j)}=13.Ben^p.FC. au^{pb}._{j\backslash p_x._{j\backslash q_x}}$$
, se válido

$$VAC^{rpbb(j)} = 13. Ben^p. FC. \tau^{pb}._{i} p_x^i._{i} q_x^i$$
, se inválido

$$VAC^{rpb(t)} = VAC^{rpbb(j)}.FC._{t/}p_x^H$$

cepe.tc.br/epp/validaDoc.seam Código do documento: 🦀 Observação: Calcula-se um $VAC^{rpbb(j)}$ para cada ano (j) de zero a (ω -x) aplica-se a sobrevivência do grupo familiar em cada ano (t), variando (t) de (i) a $(\omega - x)$

903e-4ea6-af**fe**4b1b08d1b85a Valor Total das Receitas das Contribuições Futuras do Ente Decorrentes Reversão de Aposentadoria (VTCF^{rpb}):

$$VTCF^{rpb} = \sum_{t=0}^{\omega-x} v^{t+1} \cdot VAC^{rpb(t)}$$

Sendo:

 Ben^p = benefício de aposentadoria quando convertido em pensão

x = idade atual do beneficiário

 $t = número anos a calcular, de zero a (<math>\omega$ -x)

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

LI = Limite de isenção (teto do RGPS vigente na data base do cálculo)

 $_{i}/p_{x}$ = probabilidade de uma pessoa de idade (x) atingir a idade (x+j) válida ou inválida

 $_{i/}q_{x}$ = probabilidade de uma pessoa de idade (x) falecer na idade (x+j) válida ou inválida

 $p_x^i = \text{probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+j)}$

 $_{i}/q_{x}^{i}$ = probabilidade de uma pessoa inválida de idade (x) falecer na idade (x+j)

 p_{x}^{H} = probabilidade do grupo familiar de uma pessoa de idade (x) ating idade (x+t) em condições de receber o benefício de pensão $\tau^{pb} = taxa \ de \ contribuição \ dos \ segurados \ inativos \\ v^t = fator \ de \ descapitalização \ financeira \ de \ (t) \ anos$ Benefícios concedidos de Pensão por morte:
a) regime financeiro: item 5.0.1
b) formulações para o valor atual dos benefícios concedidos (VABFc) abertas available of the concedidos (idade (x+t) em condições de receber o benefício de pensão

- V. Benefícios concedidos de Pensão por morte:

 - formulações para o valor atual dos benefícios concedidos (VABFc) abertas abrivel de anuidades, probabilidades e fatores financeiros, se aplicável abenefício e à sua estrutura técnica: $\frac{\text{alores Anuais do Encargo de Pensões Concedidas }(VAE^{bpm}): VAE^{bpm(t)} = 13.\,Ben^{pm}.\,FC._{t/}p_x$ $\frac{\text{Observação}}{\text{Coliquia-se um }VAE^{bpm(t)}\text{para cada ano }(t)\text{ de zero até }(\omega\text{-x})$ $\frac{\text{alor Total do Encargo Futuro de Pensões Concedidas }(VTEF^{bpm}): VTEF^{bpm} = \sum_{t=0}^{\omega-x} v^{t+1}.\,VAE^{bpm(t)}$

<u>Valores Anuais do Encargo de Pensões Concedidas (VAE^{bpm}):</u>

$$VAE^{bpm(t)} = 13.Ben^{pm}.FC._{t/}p_x$$

Valor Total do Encargo Futuro de Pensões Concedidas (VTEF^{bpm}):

$$VTEF^{bpm} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAE^{bpm(t)}$$

Sendo:

Ben^{pm} = valor mensal do benefício de pensão

x = idade atual do pensionista

 $t = número anos a calcular, de zero a (\omega-x)$

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $_{t}/p_{x}$ = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) válida ou inválida

 v^t = fator de descapitalização financeira de (t) anos

c) formulações para o valor atual das contribuições futuras concedidos (VACFc) abertas ao nível de anuidades, probabilidades e fatores financeiros, se aplicável ao benefício e à sua estrutura técnica:

Valores Anuais das Contribuições a Receber de Pensionistas ($VAC^{bpm(t)}$):

Se
$$(Ben^{pm} - LI) > 0$$
:

 $\begin{array}{c} \text{Valores Anuais das Contribuições a Receber de Pensionistas} (VAC^{bpm(t)}) : \\ & \text{Acesse an improvemento Assimab Digitalmente ou Para Contribuições and the providence of the provide$

$$VTCF^{bpm} = \sum_{t=0}^{\omega - x} v^{t+1} \cdot VAC^{bpm(t)}$$

 v^t = fator de descapitalização financeira de (t) anos

5.3. EXPRESSÕES DE CÁLCULO DAS ALÍQUOTAS DE CONTRIBUIÇÃO

B. EXPRESSÕES DE CÁLCULO DAS ALÍQUOTAS DE CONTRIBUIÇÃO

I. Alíquota normal do ente.

Definida na legislação do ente público, respeitando o percentual mínimo calculado processor normal.

II. Alíquota normal do segurado.

Definida na legislação do ente público, respeitando o percentual mínimo calculado do mo custo normal.

III. Alíquota normal do aposentado.

Definida na legislação do ente público.

IV. Alíquota normal do pensionista.

Definida na legislação do ente público. como custo normal.

como custo normal.

5.4. EXPRESSÕES DE CÁLCULO DO VALOR ATUAL DAS REMUNERAÇÕES FUTURAS

Os valores atuais das remunerações futuras serão determinados por processor atuarial, correspondendo ao somatório dos valores projetados das remunerações dos segurados ativos durante o período laborativo.

Valores Anuais da Folha Salarial ($VAFS^{(t)}$): $VAFS^{(t)} = 13.REM.FC. t_1 p_x^{aa}. \frac{Cxc^{x+t+1}}{cxc^x}$ Observação: Calcula-se um $VAFS^{(t)}$ para cada ano (t) de zero a (r-x)

Valores Anual de Receitas Normais sobre a Folha Salarial ($VARFS^{(t)}$): $VARFS^{(t)} = 13.REM.FC. t_1 p_x^{aa}. \frac{Cxc^{x+t+1}}{cxc^x}. \tau^a$ Valor Total da Folha Salarial Futura (VTFSF): $VTFSF = \sum_{t=0}^{r-x} v^{t+1}.VAFS^{(t)}$ Valor Total da Receita Normal sobre a Folha Salarial Futura (VTRSF): $VTRSF = \sum_{t=0}^{r-x} v^{t+1}.VAFS^{(t)}$ Valores Anuais da Folha Salarial Estável ($VAFSx^{(t)}$): $VAFSx^{(t)} = 13.REM. \frac{Cxc^{x+t+1}}{cx^{x+1}}$

$$VAFS^{(t)} = 13.REM.FC._{t}p_x^{aa}.\frac{c_xc^{x+t+1}}{c_xc^x}$$

$$VARFS^{(t)} = 13.REM.FC._{t}p_x^{aa}.\frac{Cxc^{x+t+1}}{Cxc^x}.\tau^a$$

$$VTFSF = \sum_{t=0}^{r-x} v^{t+1} \cdot VAFS^{(t)}$$

$$VTRSF = \sum_{t=0}^{r-x} v^{t+1} . VARFS^{(t)}$$

$$VAFSx^{(t)} = 13.REM \cdot \frac{Cxc^{x+t+1}}{Cxc^x}$$

Observação: Calcula-se um $VAFSx^{(t)}$ para cada ano (t) de zero a (r-x)

Sendo:

REM = valor projetado da remuneração mensal

x = idade atual do segurado

r = idade de aposentadoria

t = número anos a calcular, de zero a (r-x)

FC = fator de capacidade

 t_{t}/p_{x}^{aa} = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) viva e válida

 v^t = fator de descapitalização financeira de (t) anos

 au^a = taxa de contribuição dos segurados ativos

Cxc = tabela de crescimento das remunerações

5.5. EXPRESSÃO DE CÁLCULO E METODOLOGIA DA COMPENSAÇÃO FINANCEIRA

Abaixo estão demonstrados e justificados os critérios e formulações utilizados para cálculo da compensação financeira entre o regime instituidor e o de origem, a receber a pagar, considerando os benefícios a conceder e benefícios concedidos.

I. Compensação financeira dos benefícios concedidos a receber.

Valores Anuais da Compensação Financeira a Receber $(VAC^{bcf(t)})$:

 $VAC^{bcf(t)} = 13.VMCF.FC._{t/}p_x$, se válido

ดน

 $VAC^{bcf(t)} = 13.VMCF.FC._{t}/p_x^i$, se inválido.

<u>Observação</u>: Calcula-se um $VAC^{bcf(t)}$ para cada ano (t) de zero até (ω -x)

Valor Total das Receitas Futuras Compensação Financeira a Receber (VTCF^{bcf}

$$VTCF^{bcf} = \sum_{t=0}^{\omega-x} v^{t+1} . VAC^{bcf(t)}$$

Sendo:

VMCF = valor mensal do benefício de compensação financeira concedido e em recebimento mensal pelo RPPS de outro regime previdenciário

x = idade atual do beneficiário

 $t = número anos a calcular, de zero a (<math>\omega$ -x)

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $_{t/}p_{x}$ = probabilidade de uma pessoa de idade (x) atingir a idade (x+t) válida ou inválida

 t/p_x^i = probabilidade de uma pessoa inválida de idade (x) atingir a idade (x+j) v^t = fator de descapitalização financeira de (t) anos

II. Compensação financeira dos benefícios concedidos a pagar.

rotatividade.

Consideramos este compromisso como nulo, devido a não adoção da hipótese de imps//etce. Lope de la hipótese de

$$VAC^{cf(t)} = 13.VECF.FC._{(r-x+t)}p_x^{ac}$$

4a0cfe54-903e-4ea6-aff5-4b1b08d1

$$VTCF^{cf} = \sum_{t=r-x}^{\omega-r} v^{t+1} . VAC^{cf(t)}$$

Sendo:

VECF = valor mensal estimado de compensação financeira a receber pelo RPPS, referente a períodos de contribuição do segurado ativo a outros regimes previdenciários

x = idade atual do segurado ativo

r = idade de aposentadoria

 $t = número anos a calcular, de (r-x) a (\omega-r)$

 ω = última idade de uma tábua de mortalidade

FC = fator de capacidade

 $(r-x+t)/p_x^{aa}$ = probabilidade de uma pessoa de idade (x) atingir a idade (r+t) viva e válida

 v^t = fator de descapitalização financeira de (t) anos

IV. Compensação financeira dos benefícios a conceder a pagar.

Consideramos este compromisso como nulo, devido a não adoção da hipótese de rotatividade.

Documento Assinado Digitalmente por: DANIELE DA SILVA FERREIRA

5.6. EXPRESSÕES DE CÁLCULO DA EVOLUÇÃO DAS PROVISÕES MATEMÁTICAS PARA 🤄 ÓXIMOS DOZES MESES Abaixo a demonstração da formulação utilizada para a cálculo das provisões PRÓXIMOS DOZES MESES

matemáticas e resultado atuarial (déficit/superávit):

Provisões Matemáticas de Benefícios Concedidos (PBC):

a formulação utilizada para a cálculo das provisões al (déficit/superávit):
$$\frac{eficios Concedidos}{PBC}(PBC):$$

$$PBC = (VTEF^{bap} + VTEF^{brap} + VTEF^{bai} + VTEF^{bra} + VTEF^{brap}) - (VTCF^{bap} + VTCF^{brap} + VTCF^{bpm} + VTCF^{pb} + VTCF^{rpb} + VTCF^{rpb} + VTCF^{rpb} + VTCF^{rpb} + VTCF^{rpb})$$

$$\frac{eficios a Conceder}{PBAC}(PBAC):$$

$$\frac{eficios Concedidos}{PBC}(PBC):$$

$$\frac{eficios Conceder}{PBAC}(PBC):$$

$$\frac{eficios a Conceder}{PBAC}(PBC):$$

$$\frac{eficios a Conceder}{PBAC}(PBAC):$$

$$\frac{eficios a$$

Provisões Matemáticas de Benefícios a Conceder (PBAC):

$$PBAC = (VTEF^{ap} + VTEF^{rap} + VTEF^{ai} + VTEF^{rai} + VTEF^{pm} + VTEF^{ad} + VTEF^{sm} + VTEF^{sf}) - (VTCF^{at} + VTCF^{pa} + VTCF^{ap} + VTCF^{ai} + VTCF^{rai} + VTCF^{rai})$$

<u>Provisões Matemáticas Totais (PMT):</u>

$$PMT = PBC + PBAC$$

Apuração da Situação Atuarial:

Se o ativo financeiro do RPPS for maior que o PMT, temos Superávit:

$$Superávit = AtivoFinanceiro - PMT$$

Se o ativo financeiro do RPPS for menor que o PMT, temos Déficit:

$$Déficit = PMT - Ativos Garantidores$$

A partir do resultado atuarial apresentado acima, é feito um ajuste mensal nos custos e receitas de benefícios a conceder, pela variação do índice mensal de correção monetária da meta atuarial (INPC/IPCA) e mais a taxa mensal de juros e desconto atuarial. Nos benefícios a conceder, além da correção mencionada acima é acrescentado 1/12 avos da reserva de benefícios a conceder dos ativos iminentes na data base da avaliação anterior.

5.7. EXPRESSÕES DE CÁLCULO PARA AS PROJEÇÕES DO QUANTITATIVO DE SEGURAD **ATUAIS E FUTUROS**

5.8. EXPRESSÕES DE CÁLCULO E METODOLOGIA PARA FUNDOS

- JAIS E FUTUROS

 Não elaboramos projeção de quantitativo de segurados.

 B. EXPRESSÕES DE CÁLCULO E METODOLOGIA PARA FUNDOS

 I. Fundo garantidor de benefícios estruturados em regime de repartição simples.

 Não temos benefícios calculados por repartição simples.

 II. Fundo garantidor de benefícios estruturados em regime de repartição de capitates cobertura.
- de cobertura.

de repartição simples.

Não temos benefícios calculados por repartição de capitais de cobertura.

III. Fundo para oscilação de riscos dos benefícios estruturados em regime financeiro repartição simples.

Não temos benefícios calculados por repartição simples.

IV. Fundo para oscilação de riscos dos benefícios estruturados em repartição de pitais de cobertura.

Não temos benefícios calculados. -4ea6-aff5-4b1b08 capitais de cobertura.

Não temos benefícios calculados por repartição de capitais de cobertura.

V. Fundo para oscilação de riscos dos benefícios estruturados em regime capitalização

Diante do resultado atuarial, não propusemos a criação de fundo para oscilação de riscos.

6. EXPRESSÕES DE CÁLCULO E METODOLOGIA PARA O EQUACIONAMENTO DO DÉFICIT ATUARIAL

Decreto Nº 47/2015

Ano	Alíquota	Ano	Alíquota
2022	10,39%	2034	36,00%
2023	12,47%	2035	36,00%
2024	14,96%	2036	36,00%
2025	17,96%	2037	36,00%
2026	21,55%	2038	Alíquota 36,00% 36,00% 36,00% 36,00%
2027	25,86%	2039	36,00%
2028	31,03%	2040	36,00% 36,00% 36,00% 36,00%
2029	36,00%	2041	36,00%
2030	36,00%	2042	36,00%
2031	36,00%	2043	36,00%
2032	36,00%	2044	36,00%
2033	36,00%		

7. EXPRESSÕES DE CÁLCULO E METODOLOGIA DOS GANHOS E PERDAS ATUARIAIS

Para a elaboração de estudo de ganhos e perdas atuariais, iremos aguardar publicação de Instrução Normativa específica, conforme previsto no inciso XI do § 1º drigo validable. Art. 70 da Portaria 464 de 19 de novembro de 2018.

7.1. VALOR DAS REMUNERAÇÕES
Aguardando definição de metodologia.

7.2. EXPECTATIVA DE MORTALIDADE
Aguardando definição de metodologia.

7.3. RENTABILIDADE DOS INVESTIMENTOS
Aguardando definição de metodologia.

7.4. QUANTIDADE E VALORES DE APOSENTADORIAS
Aguardando definição de metodologia.

Documento Assinado Digitalmente por: DANIELE DA SILVA FERREIRA

8. PARÂMETROS DE SEGREGAÇÃO DE MASSAS

8. PARAMETROS DE SEGREGAÇÃO DE MASSAS

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do déficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas

O financiamento do deficit atuarial não adota a metodologia de segregação de massas de massas de massas de massas de massas de massas de

9. EXPRESSÕES DE CÁLCULO DA CONSTRUÇÃO DA TÁBUA DE SERVIÇOS

SERV Ab cálculos:	aixo descrevemos a formulação da	s probabilidades básicas utilizadas nos://etce.tcpp.tic.br/epp/validadoc.se Expressão q(x) = "Hipótese biométrica"	
Tabela	Descrição	Expressão Expressão	
q(x)	Tábua de mortalidade de válidos.	q(x) = "Hipótese biométrica"	
i(x)	Tábua de entrada em invalidez.	q(x) = "Hipótese biométrica" $i(x)$ = "Hipótese biométrica" $i(x)$ = "Hipótese biométrica"	
qi(x)	Tábua de mortalidade de inválidos.	qi(x) = "Hipótese biométrica"	
l(x)	Número de segurados vivos com idade x	I(x-1) * (1 - q(x-1)) Lii(x - 1) * (1 - qi(x-1)) + Laa(x - 1) * (1 - qi(x-1))	
Lii(x)	Número de segurados vivos e inválidos idade x	Lii(x - 1) * (1 - qi(x-1)) + Laa(x - 1) * (1	
Laa(x)	Número de segurados vivos e válidos com a idade x	I(x) - Lii(x)	
Li(x)	Número de segurados vivos inválidos com idade x	Li(x - 1) * (1 - qi(x-1))	
Pxaa(x)	Probabilidade do segurado chegar vivo e válido com na idade x + t	Pxaa(x) = Laa(x + 1) / Laa(x)	
Ph(x)	Probabilidade do segurado ter uma família em condições de receber o benefício a cada momento t	Ph(x) = SE(x = 0 E t = 0) { H(x) } SENAO { I(x + t) / I(x) }	

10. PARECER CONCLUSIVO

Esta NTA – Nota Técnica Atuarial foi desenvolvida para demonstrar a metodologia » de cálculo empregada nas avaliações e reavaliações atuariais desenvolvidas pe ACTUARIAL - Assessoria e Consultoria Atuarial Ltda.

Esta metodologia é resultado do desenvolvimento de soluções atuariais de mais de 30 anos e foi aprimorada com o auxílio de diversos atuários e profissionais de TI.

A partir da avaliação atuarial 2022, data-base 31/12/2021, passaremos a adotars o método de financiamento PUC (Projected Unit Credit ou Crédito Unitário Projetado) em substituição ao método IEN (Idade de Entrada Normal) utilizado anteriormente, em Ş atendimento aos procedimentos contábeis previstos no Manual de Contabilidad Aplicada ao Setor Público (MCASP - 2022) - página 406.

Também passamos a utilizar a hipótese de Fator de Capacidade de Remuneraçõe e Benefícios, para refletir melhor o impacto das perdas com reposição dos índices anuais de correção destes valores e a forma de estimar o impacto da aplicação da média das e54-903e-4ea6-aff5-4b1b08d1b85a remunerações nos benefícios futuros dos servidores em atividade.

Curitiba (PR) - fevereiro de 2023.

Luiz Claudio Kogut

Atuário - MIBA 1.308

ACTUARIAL - Assessoria e Consultoria Atuarial Ltda.